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ABSTRACT

Promoting the spatial resolution of off-the-shelf hyperspectral sen-
sors is expected to improve typical computer vision tasks, such as
target tracking and image classification. In this paper, we investi-
gate the scenario in which two cameras, one with a conventional
RGB sensor and the other with a hyperspectral sensor, capture the
same scene, attempting to extract redundant and complementary in-
formation. We propose a non-negative sparse promoting framework
to integrate the hyperspectral and RGB data into a high resolution
hyperspectral set of data. The formulated problem is in the form
of a sparse non-negative matrix factorization with prior knowledge
on the spectral and spatial transform responses, and it can be han-
dled by alternating optimization where each subproblem is solved
by efficient convex optimization solvers; e.g., the alternating direc-
tion method of multipliers. Experiments on a public database show
that our method achieves much lower average reconstruction errors
than other state-of-the-art methods.

Index Terms— Hyperspectral images, RGB images, image fu-
sion, non-negativity, sparsity

1. INTRODUCTION

Hyperspectral cameras provide the ability to sample a scene’s
spectral properties more densely. Whereas a normal RGB cam-
era roughly divides the observation into three components, namely
red, green, and blue, a hyperspectral camera can easily obtain thirty
or more distinct bands across the visible spectrum. Having detailed
spectral information can be very useful in a number of computer
vision tasks ranging from object recognition and tracking [1, 2, 3, 4]
to geosensing [5], as RGB alone is often insufficient to identify the
materials within a scene. With this greater spectral resolution for
hyperspectral images, however, comes the tradeoff of a decreased
spatial resolution [6]; yet in many applications, a high spatial res-
olution equivalent to that of an RGB camera is desirable. Because
of hardware limitations, however, it would be more cost-effective
to estimate a high resolution hyperspectral image than to actually
obtain it directly.

Hence, we specifically seek a high spatial resolution hyperspec-
tral signal Z ∈ RMh×Lc where Mh is the number of hyperspectral
bands and Lc is the number of pixels in the desired high resolution
image for each band. As noted in previous work [6, 7], Z can be
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factorized into two matrices:

Z = AS, (1)

where A ∈ RMh×N and S ∈ RN×Lc are the hyperspectral mate-
rial basis matrix and the hyperspectral material coefficients matrix,
respectively. Thus, the columns of A are the hyperspectral basis
vectors corresponding to scene materials, with N as the number of
scene materials, and the columns of S are the material coefficients
present at each pixel in the high resolution data Z.

Since Z cannot be directly obtained, we instead attempt to re-
construct it from our low resolution hyperspectral observation X ∈
RMh×Lh and our high resolution RGB observation Y ∈ RMc×Lc .
Here we denote the number of pixels in the low resolution data as
Lh, where Lh < Lc, and the number of spectral bands in the RGB
data as Mc = 3. We may express X and Y as follows:

X = ASG = ZG, (2)
Y = FAS = FZ, (3)

Note that X and Y each are degraded versions of the desired high
resolution hyperspectral data Z, where X is spatially “downsam-
pled” by G ∈ RLc×Lh , and where Y is an RGB-transformed ver-
sion of Z by F ∈ R3×Mh . Here F and G are assumed to be known.
Since the downsampling matrix G may not be easily obtained in
practice, in Section 3.2 we experiment with the scenario in which G
is imperfectly known.

Many methods have been explored for reconstructing Z from
X and Y. Most recently, coupled nonnegative matrix factoriza-
tion (CNMF) [7] uses a conventional NMF framework to estimate
A and S from X and Y, and it employs F and G to couple the two
estimations (2) and (3) in an iterative manner. The non-negativity
constraint in CNMF is motivated by the simple observation that in
real-world scenarios both the material basis A and the material coef-
ficients S should take non-negative values. One drawback, however,
is that NMF algorithms do not always yield a unique factorization
[8, 9]. On the other hand, the work by Kawakami et al. [6] estimates
the spectral basis A by a sparse-based dictionary learning method
[10], and it enforces the coefficients in S to also be sparse. This
sparsity constraint relies on the assumption that there are few mate-
rials present at any particular pixel location in Z. Moreover, this is
useful because the sparsity of S may be helpful in finding a unique
reconstruction of Z, as the linear system produced by (2) and (3) is
underdetermined. The results yielded by [6], however, may not be
physically explainable because in practice A and S should be non-
negative.
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In this paper we propose a non-negative sparse promoting frame-
work that takes into consideration not only the non-negativity of the
material basis A and the material coefficients matrix S, but also the
sparsity in S. The formulated problem is in the form of a sparse non-
negative matrix factorization with prior knowledge on the spectral
and spatial transform responses F and G, and it can be handled by
alternating optimizations where each subproblem is solved by con-
vex optimization solvers. To be computationally efficient, we im-
plement alternating direction method of multipliers (ADMM) meth-
ods for each subproblem. Experiments on 20 different scenes from
a public database show that our proposed method outperforms the
state-of-the-art methods [7, 6] on average, regardless of whether the
downsampling matrix G is known perfectly or imperfectly.

2. PROBLEM FORMULATION AND ALGORITHM

We consider the problem of estimating Z or, equivalently, A and
S, from the hyperspectral data X and the corresponding RGB im-
age Y. To encourage non-negativity on A and both non-negativity
and sparsity on S, we can formulate by (2) and (3) the optimization
problem as follows:

min
A∈RMh×N

+

S∈RN×Lc
+

1

2
‖X−ASG‖2F +

1

2
‖Y − FAS‖2F + λ‖S‖1, (4)

where RM×N+ denotes the set of non-negative M × N matrices,
‖ · ‖F denotes the Frobenius norm, ‖S‖1 denotes the `1 norm of
the elements of S, and λ > 0 leverages the fitting errors of the first
two cost functions against the sparsity of S. Problem (4) is bicon-
vex. Thus a natural way to handle this problem is to apply alternating
optimization; that is, with an initial A0 we solve the following two
subproblems iteratively,

Sk+1 = arg min
S∈RN×Lc

+

J (Ak,S), (5)

Ak+1 = arg min
A∈RMh×N

+

J (A,Sk+1), (6)

where J (A,S) denotes the objective function of problem (4), and
k = 0, 1, 2, ... is the iteration number. It has been shown in [11] that
the iterates (5) and (6) above will converge to a stationary point of
problem (4). Additionally, both subproblems are convex and can be
solved by any convex optimization solver. In our case, however, the
size of X and Y are very large with hundreds of thousands of entries,
thus we need a computationally cheap algorithm to solve these two
problems. The alternating direction method of multipliers [12, 13]
is well-suited for this purpose because it uses variable splitting and
dual decomposition which, together, make the computational com-
plexity in each ADMM iteration relatively low. Further, the linear
convergence of ADMM algorithms for convex problems has been
established [14] given certain error bound conditions.

The complete alternating optimization procedure for problem
(4) is outlined in Algorithm 1. We use the alternating volume max-
imization (AVMAX) algorithm [15] to initialize A0, as it is an ef-
ficient and effective algorithm that produces a spectral basis with
maximal convex cone volume. Since one of the assumptions made
in [15] does not hold in our problem, we deviate slightly from the
exact method in [15] by rescaling each column of the hyperspectral
data X, shown below, before providing it as the input of the AVMAX
algorithm:

[X̄]i = [X]i/1
T [X]i, i = 1, ..., Lh. (7)

Algorithm 1: Alternating optimization for problem (4).
input : X, Y, G, F, λ > 0 and N .
initialize A0 via AVMAX with X̄ given by (7), and set
k = 0.
while not converged do

estimate Sk+1 via ADMM in (5).
estimate Ak+1 via ADMM in (6).
update k := k + 1.

end
compute Z = AkSk.
output: reconstructed high resolution hyperspectral data Z.

Here [X̄]i denotes the ith column of X̄, and 1 is an appropriately
sized vector with each entry equal to 1.

2.1. ADMM for Problems (5) and (6)

We now develop the ADMM method for problem (5). By using
vec (PQR) = (RT ⊗P) vec (Q), where⊗ denotes the Kronecker
product and vec(·) denotes the vectorization operator, and by letting
s = vec (S), we can easily rewrite (5) as

min
s∈RNLc

+

1

2
‖z −Bs‖22 + λ ‖s‖1 (8)

where

z =
[
vec (X)T vec (Y)T

]T
∈ RMhLh+3Lc , (9a)

B =
[
(GT ⊗Ak)T (I⊗ FAk)T

]T
∈ R(MhLh+3Lc)×NLc . (9b)

Problem (8) turns out to be a non-negative, `1 norm regularized lin-
ear least squares problem. To apply ADMM to this problem, we
reformulate problem (8) as

min
x,s,y∈RNLc

1

2
‖z −By‖22 + λ ‖s‖1 + I+(x), s.t. x = s,x = y,

(10)
where I+(x) is the indicator function of the non-negative orthant
of x. The ADMM framework operates on the augmented Lagrange
multiplier of problem (10),

Lµ(x, s,y,h1,h2) =
1

2
‖z −By‖22 + λ ‖s‖1 + hT1 (x− s)

+ I+(x) + hT2 (x− y) +
µ

2
‖x− s‖22 +

µ

2
‖x− y‖22 , (11)

where h1 and h2 are dual variables, and µ > 0. Further, ADMM
optimizes in steps the primal variables of Lµ by

xj+1 = arg min
x∈RNLc

Lµ(x, sj ,yj ,hj1,h
j
2), (12a)

sj+1 = arg min
s∈RNLc

Lµ(xj+1, s,yj ,hj1,h
j
2), (12b)

yj+1 = arg min
y∈RNLc

Lµ(xj+1, sj+1,y,hj1,h
j
2), (12c)

and the dual variables by

hj+1
1 = hj1 + µ(xj+1 − sj+1), (13)

hj+1
2 = hj2 + µ(xj+1 − yj+1), (14)

1410



where j is the ADMM iteration number. The problems in (12) can
be further expressed as

min
x∈RNLc

I+(x) +
1

2

∥∥∥∥x− 1

2

(
sj + yj − µ−1

(
hj1 + hj2

))∥∥∥∥2
2

,

(15a)

min
s∈RNLc

λ

µ
‖s‖1 +

1

2

∥∥∥xj+1 − s + µ−1hj1

∥∥∥2
2
, (15b)

min
y∈RNLc

‖z −By‖22 + µ
∥∥∥xj+1 − y + µ−1hj2

∥∥∥2
2
, (15c)

Problems (15a) and (15b) are well known to be proximal oper-
ators associated with I+(x) and λµ−1 ‖s‖1, respectively [13], and
thus they can be easily verified to have the closed-form solutions

xj+1 =
[
sj + yj − µ−1

(
hj1 + hj2

)]
+
/2, (16)

sj+1 = sgn (gj) max
{∣∣∣gj∣∣∣− λµ−1, 0

}
, (17)

where [·]+, sgn (·), | · |, and max{a, b} denote the non-negative pro-
jection, algebraic sign function, absolute value function, and maxi-
mum function of a and b, respectively, where each operates element-
wise, and gj = xj+1 + µ−1hj1. Problem (15c) is an unconstrained
least-squares problem, and it has the closed-form solution

yj+1 =
(
BTB + µI

)−1 (
BTz + µ

(
xj+1 + µ−1hj2

))
, (18)

where I is the identity matrix of proper dimension.
The details of the above ADMM procedure for problem (10)

are summarized in Algorithm 2. The initializations are µ = 1.0,
β = 1.01, and λ = 0.001. The ADMM iteration will stop when the
relative change in Lµ is smaller than a preset threshold.

From an optimization perspective, problem (6) is a special case
of problem (5) without the sparsity pursuit, and it can therefore be
executed in a similar fashion; we omit the details due to space limi-
tations.

Algorithm 2: ADMM for problem (10)

input : X, Y, G, F, Ak, λ > 0, µ > 0.
initialize s0 = y0 = h0

1 = h0
2 = 0 and j = 0.

compute z and B by (9).
while not converged do

compute xj+1 by (16).
compute sj+1 by (17).
compute yj+1 by (18).
compute hj+1

1 and hj+1
2 by (13).

update j := j + 1 and µ := min{βµ, 106} for some
β > 1.

end
output: estimated Sk from the reversed vectorization of

xj+1.

3. EXPERIMENTS

We test our algorithm on twenty scenes of a public database of hyper-
spectral images [17] that consists of everyday objects such as paint-
ings, toys, and food. For each scene there are Mh = 31 spectral
bands ranging from 400nm to 700nm in increments of 10nm, each
band taking the form of a 512 by 512 pixel image; we use this data
as our ground-truth Z, and we simulate the RGB observation Y by

Image O
u

rs

M
F

C
N

M
F

P
C

A

O
u

rs

M
F

C
N

M
F

P
C

A

O
u

rs

M
F

C
N

M
F

P
C

A

O
u

rs

M
F

C
N

M
F

P
C

A

Balloons 2.1 3.2 2.8 3.8 43.5 41.2 42.9 40.9 2.1 2.9 3.0 3.8 43.1 41.7 41.4 40.9
Balls 1.9 3.7 3.6 4.2 46.3 44.0 44.5 42.4 2.0 3.9 3.8 4.2 46.3 44.0 42.5 42.4

Beads 6.1 7.2 6.6 8.0 37.0 34.8 35.7 33.8 7.2 5.0 7.2 8.0 36.1 36.4 33.5 33.8
Beans 4.2 7.0 6.2 7.7 40.1 35.6 37.6 36.5 4.0 8.5 6.2 7.7 39.6 35.6 37.4 36.5

CD 6.5 10 11 12 35.3 32.0 31.4 30.5 5.8 11 10 12 35.5 32.2 31.8 30.5
Clay 3.1 2.9 8.9 3.9 37.4 40.3 30.9 37.5 2.8 2.8 8.1 3.9 38.5 40.7 31.6 37.5

Cloth 9.5 6.2 20 7.5 32.4 34.1 24.3 36.7 9.8 6.1 20 7.5 31.5 34.5 24.2 36.7
Face 3.4 2.6 11 2.3 37.6 39.8 26.9 41.2 3.8 3.0 10 2.3 36.6 38.4 27.6 41.2

Feathers 2.9 5.6 5.3 7.7 42.0 37.4 37.7 35.6 3.1 4.6 5.4 7.7 41.4 40.3 40.0 35.6
Flowers 4.0 5.2 7.6 4.8 36.2 36.7 30.2 40.5 3.4 4.8 7.3 4.8 37.5 37.2 30.6 40.6

Hairs 2.3 3.5 3.4 3.0 43.4 42.0 40.7 45.6 2.0 3.6 2.8 3.1 46.4 41.9 43.3 45.6
Painting 6.7 4.2 26 4.3 34.7 37.9 22.8 40.6 5.9 4.7 21 4.3 35.3 36.6 23.8 40.5

Paints 4.5 7.1 9.8 5.9 38.1 35.6 30.0 37.7 4.8 6.8 8.9 5.9 38.0 35.6 30.8 37.7
Peppers 2.1 4.4 5.5 4.3 44.2 41.3 37.3 41.3 2.5 5.8 5.7 4.3 42.8 39.0 36.9 41.3
Sponges 2.0 2.9 4.0 8.2 42.0 40.9 36.7 32.8 1.8 2.9 3.5 8.2 43.2 40.7 39.1 32.8

Spools 5.3 5.8 15 5.6 37.8 38.5 28.2 40.4 5.5 9.3 15 5.6 36.0 36.4 28.2 40.4
Statue 4.3 2.1 16 1.4 39.0 45.4 28.1 49.4 4.3 1.7 14 1.4 39.8 45.7 28.8 49.5
Tiles 7.4 4.3 23 5.8 35.7 40.9 25.1 37.4 7.1 4.9 20 5.8 35.8 39.0 25.7 37.4
Toys 3.0 6.1 5.0 5.2 40.1 35.0 38.3 37.5 2.9 5.8 5.0 5.2 40.7 34.5 35.1 37.5

Waterclr. 3.6 5.7 7.1 5.2 38.6 35.3 30.9 38.1 3.3 5.9 4.4 5.2 39.5 34.3 36.4 38.1
Average 4.2 5.0 9.8 5.5 39.1 38.4 33.0 38.8 4.2 5.2 9.1 5.5 39.2 38.2 33.4 38.8

3rd 4th (worst)Performance Scale1st (best) 2nd

G Known Perfectly G Known Imperfectly
RMSE PSNR RMSE PSNR

Table 1. Results of the proposed algorithm against Matrix Factoriza-
tion (MF) [6], Coupled Nonnegative Matrix Factorization (CNMF)
[7] and Principal Component Analysis (PCA) [16] with RMSE and
PSNR error measures under two scenarios: G known perfectly and
imperfectly. Results highlighted in green to red are the best to worst,
respectively.

applying equation (3) using a spectral transform matrix F based on
the response of a Nikon D700 camera1. To simulate the observed X,
we naively downsample the ground-truth Z by uniformly averaging
over each disjoint 8 by 8 pixel block in the original high resolution
hyperspectral data.

An example of the input data X and Y can be seen in Figure
1, where the blown-up image in row (a) is simulated from Z via
equation (3). The blown-up images in rows (b) and (c) allow the
reader to compare the simulated low resolution X to its ground truth
Z.

3.1. Baseline Comparisons
For comparison, we implement both the Matrix Factorization (MF)
method proposed by Kawakami et al. in [6] and the Coupled Non-
negative Matrix Factorization (CNMF) method proposed by Yokoya
et al. in [7]. For all methods, including ours, we set N = 10. For
CNMF, we initialize A with AVMAX [15] and allow the algorithm
to converge over as many iterations as needed, with each set of inner
iterations capped at 300.

Additionally, we also test a simple Principal Component Analy-
sis (PCA) [16] to compute the material basis A and then use equation
(3) to directly solve for S. Here we specifically change N = 3 as
do Kawakami et al. because we find that PCA performs poorly with
N = 10.

3.2. The Effect of G
Because we may not know the spatial relationship G in a real life
scenario, we test all algorithms under two separate conditions. In the
first condition we assume that we know G perfectly. The simulated
X that we use is produced by simply applying equation (2) with
a G that uniformly downsamples each disjoint 8 by 8 pixel block
of the high resolution hyperspectral data. Subsequently, when we
reconstruct Z from X and Y we use the same G matrix.

1Camera response figures can be found at www.maxmax.com.
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In the second condition we assume that we do not know G
perfectly. Thus to simulate this we use a different downsampling
method to produce X. For convenience, we choose Matlab’s bicu-
bic downsampling function with a downsampling factor of 8. For
reconstruction we use the naive G used in the previous scenario.

3.3. Error Measures
To test the accuracy of our proposed algorithm and the comparisons,
we use both the root-mean-square errors (RMSE) between the esti-
mated Ẑ and the ground-truth Z (across all spectral bands)

RMSE =

√
‖Z− Ẑ‖2F
MhLc

, (19)

and the average peak signal-to-noise ratios (PSNR) defined as:

PSNR = 10 · log10

(
1

Mh

Mh∑
i=1

MAXi
MSEi

)
(20)

where MAXi and MSEi are the maximum pixel value and the mean-
square error of Ẑ in the ith band, respectively. With these metrics,
the best algorithm is the one that produces the smallest RMSE and
the largest PSNR on average.

4. RESULTS AND CONCLUSION

Full results are reported in Table 1. The proposed method clearly
outperforms all others when taken on average over our data set.
Even when we remove the assumption that we know G perfectly,
our method performs the best. These trends hold true in both error
measures, RMSE and PSNR. Notably, CNMF shows the worst per-
formance while the performances of PCA and Matrix Factorization
are comparable.

A closer examination of the data suggests that images with many
materials (or many apparent colors) that vary rapidly are the most
difficult to accurately reconstruct. Table 1 shows that our algorithm
has the most difficulty on these scenes (such as “Cloth,” “Painting,”
and “Statue”). In Figure 1, for instance, it is apparent that errors oc-
cur along borders between colors and in regions where many colors
blend together or change from one to the other. All of the methods
we tested seem susceptible to this challenge, and evidence of this can
be seen in the 420-430nm band of “Watercolors” (first column from
the left of Figure 1) in which errors spike sharply at the borders be-
tween colors. In addition, however, both MF and CNMF to varying
degrees appear to have difficulty in accurately reconstructing entire
material spectra, suggesting that the algorithms do not lead A to
converge well. Indeed, PCA also seems to suffer from this difficulty.
Our method, however, is unique in that its framework allows for re-
peated updates of A from S, and vice versa, which may explain its
superior performance on images like “Watercolors” shown in Figure
1. In addition, our method makes direct use of G whereas CNMF
only uses this information during initializations and MF does not use
it at all.

It is conceivable that the relative performance of these algo-
rithms may differ under other conditions: higher or lower down-
sampling rates, for instance (Kawakami et al. use a downsampling
factor of 32, Yokoya et al. use 6, and we use 8), or different num-
bers of spectral bands in both X and Y. A separate consideration
is the computation time. For the 512 by 512 images used in our ex-
periments both our method and CNMF take many hours to complete
one reconstruction, whereas Matrix Factorization usually takes less
than one hour, and PCA takes only a few minutes. Solving the large
system in equation (18) is the time consuming step of our algorithm.

Fig. 1. Results for “Watercolors” with G known, from left to right:
(a) RGB bands of Y; remaining rows are the 420-430nm, 490-
500nm and 600-610nm bands of: (b) X, (c) ground truth Z, (d) our
reconstruction, (e) our error, (f) MF reconstruction, (g) MF error, (h)
CNMF reconstruction, (i) CNMF error. Errors are on an 8-bit scale.

1412



5. REFERENCES

[1] A. C. Rice, J. R. Vasquez, J. Kerekes, and M. J. Mendenhall,
“Persistent hyperspectral adaptive multi-modal feature-aided
tracking,” in SPIE Defense, Security, and Sensing, 2009, p.
73340M.

[2] Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, “Segmen-
tation and classification of hyperspectral images using water-
shed transformation,” Pattern Recognition, vol. 43, no. 7, pp.
2367–2379, 2010.

[3] L. Varsano, I. Yatskaer, and S. R. Rotman, “Temporal target
tracking in hyperspectral images,” Optical Engineering, vol.
45, no. 12, pp. 126201, 2006.

[4] J. Blackburn, M. Mendenhall, A. Rice, P. Shelnutt, N. Soliman,
and J. Vasquez, “Feature aided tracking with hyperspectral
imagery,” Proc. of SPIE, p. 66990S, 2007.

[5] A. Greiwe and M. Ehlers, “Combined analysis of hyperspectral
and high resolution image data in an object oriented classifica-
tion approach,” in Proc. International Symposium on Remote
Sensing and Data Fusion over Urban Areas, 2005, pp. 13–15.

[6] R. Kawakami, J. Wright, Y.W. Tai, Y. Matsushita, M. Ben-
Ezra, and K. Ikeuchi, “High-resolution hyperspectral imaging
via matrix factorization,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2011, pp. 2329–2336.

[7] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative
matrix factorization unmixing for hyperspectral and multispec-
tral data fusion,” IEEE Transactions on Geoscience and Re-
mote Sensing, vol. 50, no. 2, pp. 528–537, 2012.

[8] Daniel D. Lee and H. Sebastian Seung, “Algorithms for non-
negative matrix factorization,” in NIPS. 2001, pp. 556–562,
MIT Press.

[9] Daniel D. Lee and H. S. Seung, “Learning the parts of objects
by non-negative matrix factorization,” Nature, vol. 401, pp.
788–791, Oct. 1999.

[10] John Wright Quan Geng, Huan Wang, “On the local cor-
rectness of `1 minimization for dictionary learning,” ArXiv
preprint arXiv:1101.5672, 2011.

[11] P. Tseng, “Convergence of a block coordinate descent method
for nondifferentiable minimization,” Journal of optimization
theory and applications, vol. 109, no. 3, pp. 475–494, 2001.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and trends in
machine learning, vol. 3, pp. 1–122, 2011.

[13] D. P. Bertsekas, Nonlinear Programming, MA: Athena Scien-
tific, 1999.

[14] M. Hong and Z.-Q. Luo, “On the linear convergence of the
alternating direction method of multipliers,” ArXiv preprint
arXiv:1208.3922, 2012.

[15] T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, “A
simplex volume maximization framework for hyperspectral
endmember extraction,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 49, no. 11, pp. 4177–4193, 2011.

[16] I. T. Jolliffe, Principal Component Analysis, Springer, New
York, 2002.

[17] F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “General-
ized assorted pixel camera: postcapture control of resolution,
dynamic range, and spectrum,” IEEE Transactions on Image
Processing, vol. 19, no. 9, pp. 2241–2253, 2010.

1413


