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ABSTRACT

In this paper, we propose a new video frame interpolation
technique by a locally-adaptive robust principal component
analysis (RPCA) with weight priors. The proposed algorithm
relies on two main steps: 1. the pre-processing step initializes
the new frame by a simplified motion-compensated frame in-
terpolation and assigns each pixel a confident weight based
on both the difference of motion estimation and local con-
sistency; and 2. the refinement step updates the frame by a
proposed weighted robust principal component analysis (WR-
PCA) algorithm. Experiments demonstrate that the proposed
method outperforms the state-of-the-art algorithms, both in
visual quality and PSNR performance.

Index Terms— Frame interpolation, motion-compensated
interpolation (MCI), robust principal component analysis
(RPCA).

1. INTRODUCTION

Video frame interpolation is the technique that enhances the
temporal resolution of low bit rate coded videos by inserting
intermediate frames into the existing sequences. The primi-
tive methods such as frame repetition or linear frame interpo-
lation which do not need to rely on motion estimation (ME)
provide reasonable quality for low-complexity motions but
fail with fast moving objects. Motion compensated interpo-
lation (MCI) [1] and the related techniques have been de-
veloped to take into account ME for better frame interpola-
tion. This concept has been used by most of the state-of-
the-art frame interpolation algorithms. However, the mini-
mum error block estimation may not always provide true mo-
tions because of repetitive structures or fast changing objects;
which introduces blockiness or ghost artifacts in the interpo-
lated frames. Therefore, the common approaches for these
MCI-based methods are to exhaustively constrain the true mo-
tions by forcing them to be smooth in neighborhood regions.
One successful way is the use of block-matching algorithm
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(BMA) and mesh-based motion compensation [2] to refine
motion distribution on object boundaries. Another approach
is the utilization of image segmentation [3] to force all blocks
in a defined salient region to share the same motion vectors
(MV). A number of other approaches have been developed to
tackle this problem, but only few of them have been success-
ful in effectively reducing block artifacts and still preserving
structural details in the images.
The recent emergence of matrix recovery techniques has
opened a new trend in solving interpolation and completion
problems. Missing or corrupted elements can be robustly re-
covered by structural constraints of the input data like sparsity
or low-rank structure. Matrix completion [4] is a low-rank
matrix recovery technique that can robustly recover low-
dimensional structures from high-dimensional observations,
especially for scenarios where the data is highly missing.
This technique has been proved to efficiently solve video
completion problems like video inpainting or error conceal-
ment by incorporating the spatial and temporal correlations
of the frames to construct low-dimensional structures which
are normally in the forms of low-rank matrices [5] or low-
rank tensors [6]. However, these methods can only achieve
pleasing reconstructions for the partial incompletion in ev-
ery frame. No low-rank matrix recovery methods have been
promoted to recover full-frame missing so far.
Robust principal component analysis (RPCA) [7] is another
well-known low-rank matrix recovery framework that can re-
cover the low-rank structures from severely corrupted high-
dimensional data. This method has proved its robustness in
solving background modeling, target tracking, or image align-
ment problems [7, 8] where signals normally contain abnor-
mal objects lying on a low-dimensional background. How-
ever, as far as the knowledge of the authors, this model has not
been applied in solving any video completion problem. Fur-
thermore, the general assumption of most of the applications
is the global low-rank property of the sequence which is only
true for the case the background of the sequence is unchanged
i.e. the camera capturing the scene is fixed. Moreover, the tra-
ditional RPCA model tends to treat all pixels equally which
should not always be the case since in some situations we can
get prior-knowledge of where the outliers are more certain to
present.
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Under the above observations, we propose a novel algorithm
which can incorporate the RPCA technique into video frame
interpolation. The system involves a preprocessing step to
provide some reference information to guide the RPCA model
in refining the new frame. This preprocessing scheme not
only generates an initialized frame by a simplified bidirec-
tional ME but also produces a weighting matrix describing
the confidence of all introduced pixels obtained by this step.
In the second step, a weighted robust principal component
analysis (WRPCA) is proposed to refine every pixel in the in-
termediated frames. The pixels corresponding to true MEs
are more likely to be preserved while the pixels resulted from
incorrect MEs are automatically detected and updated.
The remaining of the paper is organized as follows. In section
2, we give a brief overview of RPCA technique and introduce
the proposed WRPCA as well as the detailed algorithm. The
next section formulates the frame interpolation via WRPCA
in a two-stage problem. Section 4 evaluates the experimental
results and we conclude this paper in section 5.

2. RPCA ALGORITHM WITH WEIGHT PRIORS

Robust principle component analysis (RPCA) is a highly
applicable low-rank matrix recovery problem recently intro-
duced by Candes et al [7] where the goal is to accurately
recover an underlying low-rank matrix from its sparse but
grossly corrupted entries. Mathematically, let A be a low-
rank data matrix. It frequently happens that we are not able to
observe A directly; instead we observe its corrupted version
D = A + E. The matrix E captures outliers, assumed to be
sparse but can have arbitrarily large magnitudes. To separate
A and E, one would like to find the simplest model that fits
the low-rank observations [7]:

Min
A,E

Rank(A) + λ ‖E‖0 s.t.D = A+E (1)

where the l0-norm ‖E‖0 is defined as the number of nonzero
entries in E and λ is a positive weighting parameter.
The above rank and l0-norm minimization problem is an NP-
hard problem. Under some mild conditions, however, the l0-
norm can be efficiently solved by recasting it as a convex l1-
based linear programming problem and the intractable rank-
minimization can be relaxed to the convex problem of nuclear
norm minimization:

Min
A,E

‖A‖∗ + λ ‖E‖1 s.t.D = A+E (2)

where the l1-norm is defined as ‖E‖1 =
∑
i |ei| with ei’s

being the entries of E and the nuclear norm ‖A‖∗ is the sum
of all singular values of the matrix A.
The model (2) treats the sparse noise distribution at all loca-
tions equally. However, when we have some prior knowledge
of where the noise E is more likely to appear, we can provide
better representations of the measurements by introducing a
weighting matrix into the formula. The WRPCA algorithm is
modeled as the following minimization:

Algorithm 1 WRPCA algorithm
Inputs: Data input D, weighting matrix WE

1. Y0 = 0, E0 = 0, µ0 > 0, ρ > 1
2. While not converged, do
3. (U,S,V) = svd(D−Ek + µ−1

k Yk);
4. Ak+1 = USµ−1

k
[S]VT ;

5. Ek+1 = Sµ−1
k WE

(D−Ak+1 + µ−1
k Yk)

6. Yk+1 = Yk + µk(D−Ak+1 −Ek+1)
7. µk+1 = ρµk
8. k = k + 1
9. end while
where Sε(X) is the soft-thresholding operator defined for
each element seperately: Sε(x) = max(|x| − ε, 0) sgn(x).
Outputs: (Ak,Ek).

Min
A,E

‖A‖∗ + ‖WE◦E‖1 s.t.D = A+E (3)

where the matrix WE is the corresponding weight priors
for noise support distributions, and ◦ denotes the Hadamard
(pointwise) product. If we set WE = λ1 then the RPCA
problem (2) is recovered.
The WRPCA model can be efficiently solved by a number of
methods including iterative thresholding (IT) [9], accelerated
proximal gradient (APG) and augmented Lagrange multipli-
ers (ALM) [10] in which ALM method is preferable because
of the fast convergence property. The augmented Lagrangian
function of (3) is expressed as:

L(A,E,Y) = ‖A‖∗ + ‖WE◦E‖1 (4)

+ 〈D−A+E,Y〉+ µ

2
‖D−A+E‖F

Here Y is the Lagrange multiplier, µ is a positive variable,
〈·〉 is the inner product and ‖.‖F denotes the Frobenius norm.
The minimization of the augmented Lagrangian function can
be solved iteratively by fixing one variable and update the
other. The detailed WRPCA algorithm is described in the
algorithm 1.

3. FRAME INTERPOLATION VIA WRPCA

The proposed algorithm to upscale the temporal frequency of
a sequence is the combination of two main steps. In the pre-
processing step, the interpolated frame is initialized by using a
simplified version of the bi-directional MCI technique. In the
second step, all pixels in each block are automatically updated
by the proposed WRPCA algorithm with a defined confidence
matrix obtained by the initialization step.

3.1. Adapted bi-directional MCI with weight calculation

The initialized frames are approximated by the block-based
bi-directional motion estimation. Without the loss of general-
ity, we assume that all the odd frames in a sequence are known
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Fig. 1. Bi-directional motion compensation initiallization

and all the even frames are to be interpolated. Each even
frame will then be initialized by only using the two nearby
frames. Let F be the unknown frame that we want to inter-
polate, and F(p) be the intensity at the pixel p in that frame.
Denote F1 and F2 as the previous and future frames. For
the block B centered at each pixel p in the to-be-interpolated
frame, we search for the best match motion trajectory in a
specific searched region from a block B1 in the frame F1 to a
block B2 in the frame F2 , passing through the block B. The
initial intensity of the pixel p is then simply calculated by av-
eraging the intensity levels of the center pixels in the blocks
B1and B2. Figure 1 depicts this process of approximating the
interpolated frame by motion compensation.

Along with calculating all the pixels in the frame F, we
also calculate the weighting matrix W whose each element
is considered as the confidence of the previous output. The
larger a component of W is, the more certainty it is a correct
motion vectors. Therefore, it will be less likely to be detected
as a noise in the second step of correcting the interpolated
frame. The weighting W(p) at each pixel p is the linear sum-
mation of the two terms:

W(p) = W(M)(p) + γW(C)(p) (5)

where W(M)(p) is calculated as one over the sum of ab-
solute difference (SAD) of the best motion estimation going
through that pixel, W(C)(p) is decided based on the consis-
tency of the motion vectors at the pixel with its eight sur-
rounding neighborhoods, and γ > 0 is a parameter to balance
the two terms . The matrix W has less weight at the location
where we cannot find a well-matched motion estimation, as
well as the motion vector going through its location is very
different with those passing its nearby pixels.

3.2. Weighted RPCA refinement

The outputs of the initialization step is not only the rough
interpolation F, but also the weighting confident matrix W
which will be used in the refinement WRPCA algorithm to
amend the frame at every pixel. Frame F is now divided into
blocks of the same size. For each block Fij of size N × N

Fig. 2. Low-rank matrix construction

(say N=16), we search for similar patches from the closed
frame to construct a low-rank structure. However, the search-
ing process is not constrained in the right previous or next
frames, but can be extended to any frame in a temporal re-
gion.

By presenting Fij as a vector dij ∈ RN2

and vectorizing
each motion estimation as dijl ∈ RN2

(l = 1, 2, ...L), we
stack these vectors into columns of anN2× (L+1) low-rank
matrix Dij .

Dij =
{
dij , dij1 , d

ij
2 , ..., d

ij
L

}
(6)

The first column of Dij is the block to be reconstructed
in vector form and the remaining columns are the matching
blocks. Intuitively, the underlying structure of all columns of
Dij should be similar thus the matrix Dij becomes a very
low-rank structure. The low-rank matrix construction is de-
scribed in figure 2.

After constructing the low-rank matrix Dij , we expect
that some of the elements in Dij are outliers in contribut-
ing the low-rank structure of Dij , especially the atoms in
the first column: Dij = Aij + Eij . These outliers in Eij

come from the uncorrected motion compensation process in
step one and will be automatically detected and updated in
the RWPCA algorithm. The other columns of Dij are the es-
timations from the clean frames. Therefore, the probability
that they behave as sparse noise is very low. With this analy-
sis, we define the weighting matrix Wij with the first column
as the corresponding weightings in W of the elements from
the first column of Dij , and the remaining columns having
some small nonnegative value. Then the RWPCA algorithm
for frame interpolation of block Fij is formulated as the fol-
lowing optimization:

Min
Aij ,Eij

∥∥Aij
∥∥
∗+
∥∥Wij ◦Eij

∥∥
1
s.t.Dij = Aij+Eij (7)
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(a) (b)

(c) (d)

Fig. 3. Interpolation of frame #50 in Foreman.cif sequence:
(a) Original frame (b) Bi-directional MCI, PSNR = 32.60 dB
(c) Saliency MCI, PSNR = 34.2 dB (d) Proposed WRPCA,
PSNR = 35.68 dB

4. EXPERIMENTAL RESULTS

In this section, some experiments are conducted to evaluate
the performance of the proposed frame interpolation algo-
rithm. The method is compared with two other frame rate-up
conversion techniques: bi-directional motion compensation
interpolation (bi-directional MCI or BMCI) [1] and the MCI-
based method using discriminant saliency and frame segmen-
tation (saliency MCI) [3]. Three sequences in CIF format:
“Foreman”, “Coastguard” and “Tennis” are tested to compare
both PSNR performance and visualization.

All the even frames in each video sequence encoded at
24 frames per second (fps) are temporally eliminated to re-
duce the number of frames by a factor of two to 12 fps. The
missing frames are then interpolated by the three methods and
compared with the originals. The block size used in the ex-
periment is fixed at 16 × 16 . Three nearest frames in both
direction, previous and future, are used as the references in
the low-rank construction step.

Sequences BMCI Saliency MCI Proposed
“Foreman” 32.31 33.85 34.52

“Coastguard” 30.60 32.05 32.73
“Tennis” 26.18 28.03 28.48

Table 1. PSNR performance comparisons with other frame
interpolation algorithms.

Figure 3 present the visual comparisons from frame 50th
in “Foreman.cif” sequence. The result from bi-directional
MCI shows blockiness artifacts because of incorrect MEs,

(a) (b)

(c) (d)

Fig. 4. Interpolation of frame #80 in Coastguard.cif sequence:
(a) Original frame (b) Bi-directional MCI, PSNR = 26.24 dB
(c) Saliency MCI, PSNR = 27.87 dB (d) Proposed WRPCA,
PSNR = 28.86 dB

while the saliency MCI and the proposed methods seem to
introduce comparable visualization with the original frame.
For frame 80th in “Coastguard.cif” sequence experiment, the
same blockiness flickers appear in bi-directional MCI while
saliency MCI brings some blurring artifacts, especially at the
regions with fast object movements. The proposed WRPCA
method tends to keep the sharpness detail while noticeably
reduces any blockiness or image damage regions in the inter-
polated frame.

Table 1 summarizes the average PSNR performance of the
three test sequences. Only the frames to be interpolated are
used to calculate the PSNR with the primary sequences. The
table shows that the proposed algorithm performs the best in
all test sequences with the PSNR improvement of up to 2.3dB
compared to bi-directional MCI and 0.7dB compared to the
state-of-the-art saliency MCI algorithm.

5. CONCLUSIONS

In this paper we proposed a novel approach to effectively
incorporate low-rank robust principal component analysis
technique into video frame interpolation problem. The inter-
polated frame is initialized by a simple MCI-based method
which calculates the intensity value at every pixel together
with a weight of how confident that pixel is plausibly resulted
from a true motion estimation. The frame is then polished by
a locally-adaptive weighted robust principal component anal-
ysis algorithm. This new approach, while exhibits superior
performance to state-of-the-art methods in both visual quality
and PSNR values, also offers a potential way in solving a
number of other video completion problems.
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