
AN OPTIMALLY SCALABLE AND COST-EFFECTIVE FRACTIONAL-PIXEL MOTION
ESTIMATION ALGORITHM FOR HEVC

1Huang LI, 2Yihao ZHANG, 1*Hongyang CHAO

1 School of Software & 2 School of Info. Sci. and Tech., Sun Yat-sen University, China 510275

ABSTRACT

Fractional-pixel motion compensation is still one of the most time-
consuming parts in the upcoming High Efficiency Video Coding
(HEVC) standard. In this paper, we propose an optimally scalable
and cost-effective fractional-pixel motion estimation (FPME)
algorithm to optimally fit to different and varying constrains of
computing resources. Our main contribution include two aspects.
Firstly, an optimally scalable and cost-effective FPME algorithm
based on a cost-benefit analysis is proposed, where we present a
improved fractional-pixel MV prediction method and a new cost-
effective priority for each search point in HEVC. Secondly, a
complexity adjustment strategy is delivered to enable the ability for
the FPME to adjust its complexity to match different given
constraints on time. Experiments show that the proposed algorithm
can achieve best R-D performance while optimally adjust its
complexity, based on any given time constraints. As a side product,
the proposed algorithm can also serve as the best fast algorithm
which has already reduced computing complexity by a factor 74%
with almost no loss on PSNR and bitrates.

Index Terms— motion estimation, fractional pixel, cost-

effective priority, video coding, HEVC

1. INTRODUCTION
High Efficiency Video Coding (HEVC) [1] [2] is the next-
generation video coding standard which is currently under
development. Aiming to improve the coding efficiency, more and
more technologies are incorporated in HEVC. But at the same time
the encoder complexity is greatly increased. Fractional-pixel
motion compensation, according to our analysis, is the most time-
consuming process for the encoder, which occupies 49% of the
total encoding time on average. Hence it is important to optimize
the fractional-pixel motion compensation for the overall encoder
performance.

In practice, available computational resources for encoder are
often constrained and varying, especially for portable devices or
real-time visual communications. Moreover, different devices are
likely to have different computing capacities. Even for the same
device, the available computing capacity for video encoder varies
from time to time because of multitasking. How to adjust the
encoder complexity adaptively with best R-D performance under
constraint and varying computing resources is important for video
encoder in practice. Therefore, researches on optimally scalable
and cost-effective algorithms, which can adaptively control their
speeds while keeping optimal performance under arbitrary

This work was partially supported by NSF of China under Grant 61173081
and Guangdong Natural Science Foundation, P.R.China, under Grant
S2011020001215.
*Corresponding author: Hongyang CHAO (isschhy@mail.sysu.edu.cn)

computational resources constraint, would likely be a must. This
paper is just focusing on optimally scalable algorithms for FPME.

Currently there are not many researches on HEVC aiming to
propose scalable algorithms. In the related results on H.264, for the
most time-consuming fractional-pixel motion estimation (FPME),
some fast algorithms have been proposed. These fast FPME
algorithms can be classified into two categories. The first category
is the model-based algorithms [3]-[5]. These algorithms establish a
mathematical model for fractional-pixel error surface and predict
the optimal MV by finding the minimal of the model. Take Hill's
method [3] for example, it tries to use a quadratic surface to fit the
subpixel SAD surfaces. But the problem is that not all actual SAD
surfaces can be well fitted. Moreover, these model-based
algorithms is not scalable. That means we are unable to get better
R-D performance if we have more time. The second category is the
neighboring-MV based algorithms [6]-[10], which derive a
predicted fractional-pixel MV as start position and then refine the
MV by a small pattern such as diamond pattern. For these
algorithm, almost all of the time is spent on refinement search.
However, these algorithms are not designed to be optimally
scalable. Optimally scalable means that it can effectively utilize
every piece of time to achieve as much R-D gains as possible. The
main reason for this defect is that different sub-pixels have quite
different cost on interpolation, especially in HEVC, but most fast
FPME algorithms ignore it.

Actually, a fast algorithm based on cost-effective concept has
been proposed for H.264 [11]. This method belongs to the
neighboring-MV based algorithms. However, it remedy the
inefficiency in refinement search by a cost-effective search order.
The search order is defined according to cost-performance ratios,
by simultaneously considering the interpolation costs and
probabilities of being optimal match point for fractional pixels. It
was proved that it can outperform the other existing fast algorithms
in H.264. However, since HEVC introduced quite a different
interpolation filter, we cannot directly apply the method in [11] to
HEVC. Furthermore, algorithm in [11] does not have the
mechanism to automatically adjust the complexity of FPME to
match a given time for FPME, which is essential to solve above
problems. Therefore, it is basically still a fast algorithm which may
not fit to different constrains on computing resources for different
video contents.

In this paper, we try to solve all the problems mentioned above
and thus proposed an optimally scalable and cost-effective FPME
algorithm for HEVC. Differing from most fast algorithm, a special
search order is adopted to check the sub-pixels with higher cost-
effective priority first. Moreover, the proposed algorithm will
actually has the ability to automatically adjust its complexity in
order to match any given FPME time on the fly.

There are two major contributions in this paper: the first one is
that we address an improve version of the optimally scalable and
cost-effective algorithm by introducing a better fractional motion

1399978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

vector prediction method which increases 10% prediction
accuracy , and delivering a new priority table for refinement search
according to the new interpolation process in HEVC. The second
one is that we propose a strategy to automatically adjust the
complexity of FPME, which is just a problem and shortage not
solved by [11]. After this, we can really have an optimally scalable
and cost-effective FPME to fit the different constrains on
computing resources.

The rest of this paper is organized as follows. Section 2
introduces our first contribution on addressing an improve version
of the optimally scalable and cost-effective algorithm for HEVC.
Section 3 presents our second contribution on automatic FPME
complexity adjusting strategy. Experimental results and
conclusions are given in section 4 and section 5 respectively.

2. OPTIMALLY SCALABLE AND COST-EFFECTIVE

ALGORITHM FOR HEVC
In this section, we will introduce the first contribution in this paper:
an improved version of the optimally scalable and cost-effective
algorithm for HEVC. It includes two major improvements
compared with the one in [11]. The first improvement is that we
bring a better fractional-pixel MV prediction method which
increases 10% prediction accuracy. And the second improvement
is that we deliver a new priority table for refinement search
according to the new interpolation process in HEVC.

Our proposed algorithm belongs to the second category of
fractional-pixel motion estimation (FPME) algorithms, i.e. the
neighboring-MV based algorithms, which consist of a fractional-
pixel motion vector (FPMV) prediction and a refinement search.

2.1 The improved FPMV prediction method
According to our analysis, the accuracy of the fractional-pixel MV
prediction method in [11] is no more than 30% for sequence with
intense motion in HEVC. In addition, we have following
observation: the fractional-pixel part of the MV predictor which is
obtained by AMVP [2] method has a high correlation with the
final optimal fractional-pixel MV. However, it is infeasible to get
the MV predictor before FPME, because the MV predictor is
selected from the MV predictor candidate list [2] as the one closest
to the final optimal MV which is obtained after integer-pixel and
fraction-pixel motion estimation. In order to solve this dilemma,
we select a 'rough' MV predictor MVrough from the candidate list
as the one closest one to MVinteger which is obtained by integer-
pixel motion estimation. The fractional-pixel part of MVrough is
then used as the predicted FPMV, which can be extracted by the
formula below:

MVfrac_pred = �MVrough − MVinteger� mod 4 (1)

where MVfrac_pred is the predicted FPMV that we used as a start
position in our proposed FPME algorithm.

To prove that the proposed predicted method is better, the
proposed predicted method is compared with the one in [11]. In the
experiments, we use the final fractional-pixel motion vector
(FPMV) by Full Fractional Pixel Search (FFPS) as a baseline to
evaluate the accuracy of the predictors obtained by our proposed
method and the one in [11].

The experiment has been performed on 20 sequences in Table
1. Table 2 shows that how many percentages of the predicted
FPMVs are exactly the final FPMVs obtained by FFPS. We can
see that the proposed prediction method improve the prediction
accuracy by 10% on average. Especially for the sequences with

intensive motion in class A and B, the proposed prediction method
improves prediction accuracy by 15%-20%.

Table 1. Sequences for analyzing the accuracy of predicted
fractional-pixel motion vector

Class Resolution Sequence
A 2560x1600 PeopleOnStreet, Traffic

B 1920x1080 BasketballDrive, BQTerrace,
Cactus, Kimono1, ParkScene

C 832x480 BasketballDrill, BQMall,
PartyScene, RaceHorses

D 416x240 BasketballPass, BlowingBubbles,
BQSquare, RaceHorses

E 1280x720 Vidyo1, Vidyo3, Vidyo4

Table 2. Prediction accuracy comparison

Class
Predicted FPME equals final FPME

proposed method in [11] accuracy
improvement

A 45.81% 29.84% 15.97%
B 47.65% 23.28% 24.37%
C 40.76% 40.07% 0.69%
D 33.65% 32.91% 0.74%
E 75.57% 67.60% 7.97%

Average 48.69% 38.74% 9.95%

2.2 The new cost-effective refinement search order for HEVC
The cost-effective algorithm in [11] gives a refinement search
order for the fractional-pixel search points in the same refinement
search pattern. But we cannot directly apply the order to HEVC
because the new interpolation filter in HEVC changes it. The
search order is relative to the cost-performance ratios of every
fractional-pixel search point. The search point with highest
performance and lowest cost will be searched first. Here we will
give a clear definition to the cost-performance ratio of each
fractional pixel, which is implicit in [11]. The cost-performance
ratio of the fractional pixel at (x, y) is defined as:

CP(x,y) = Cost(x,y)/Probability(x,y) (2)

where Probability(x,y) is the probability of being the best MV for
search position (x, y). Cost(x,y) is the computational complexity of
interpolation for the point (x, y).

However, the new 8-tap DCT-based interpolation filter in
HEVC changes the interpolation costs and probabilities, which
makes the cost-performance ratios different from those in H.264.
Hence the search order is different form that in [11].

In order to update the cost-effective refinement search order for
HEVC, we need to calculate the cost-performance ratio define in
formula (3). It involves two aspects of work: obtain the new cost
table and the new probability table for each fractional-pixel search
position in HEVC.

We start with the new cost table. All 1/4 accuracy fractional
pixels are depicted in Fig. 1(a). For better description of the new
interpolation process in HEVC, we classify those fractional pixels
into two categories based on their computational complexities on
interpolation. The first category includes 6 points: a, b, c, d, h and
n. All these points are interpolated from 8 integer pixels
horizontally or vertically. The second category includes 9 points: e,
f, g, i, j, k, p, q and r. These points are interpolated from 8
fractional pixels in the first category. For example, if we want to
interpolate the point e, we must interpolate 8 extra fractional pixels

1400

in advance as an intermediate step. That is to say, the
computational complexity of the points in the second category is 8
times that of the points in the first category. The cost to generate
each fractional pixel is shown in Fig. 1(b), which is quite different
from the one for H.264 in [11].

Fig. 1. (a) Integer pixels (blocks with upper-case letter) and

fractional pixels (blocks with lower-case letter). (b) Computational
complexity of interpolation for fractional pixels.

A new interpolation method will generate different fractional

pixel values, which may lead to the differences between the best
match points in HEVC and H.264. To ensure we get the correct
probabilities for each fractional pixel of being best match point, we
update the probability table for HEVC, based on the distribution of
optimal fractional-pixel MV (FPMV) of the sequences in Table 1.
The new probability table is shown in Fig. 2.

Combining the new cost table in Fig. 1(b) and the new
probability table in Fig. 2, we can recalculate the cost-performance
ratio for each search point by formula (2) and thus give a new
search order, i.e. search priority. The new search order for HEVC
is shown in Fig. 3.

Fig. 2. The distribution of optimal fractional-pixel MV (FPMV) of

the sequences in Table 1. (a) Graph (b) Table

2.3 Algorithm description
Step 1: Choose start search point with smaller R-D cost

between the predicted position and integer-pixel position.
Step 2: Refinement search around the start search point.
Step 2.1: In the diamond pattern, take one search point that

have the smallest value according to Fig. 3 as current search point.
Step 2.2: Interpolate before checking current search point.
Step 2.3: Match the current search point.
Step 2.4: If current search point have smaller cost than the

center point, then the opposite search point is skipped (based on
the error surface unimodal assumption in [7]).

Step 2.5: Go back to Step 2.1 until all search points in the
current diamond pattern are checked.

Step 3: If the optimal search point is in the center of the
diamond pattern, the search stops. Otherwise, the diamond pattern
moves to a new center and go back to Step 2.1.

Fig. 3. Cost-effective priority table for fractional-pixel search

points in HEVC (smaller value means higher priority).

3. FPME COMPLEXITY ADJUSTING STRATEGY
In section 2, we have proposed an optimally scalable and cost-
effective fractional-pixel motion estimation (FPME) algorithm for
HEVC. However, if we cannot find a FPME complexity adjusting
strategy to fit to any given FPME time, it is basically still a fast
algorithm which may not fit to different constrains on computing
resources and different video contents. In this section, we will
introduce our second contribution: a complexity adjustment
strategy. It can precisely control and optimally allocate the time
consumed by the proposed FPME, in order to match arbitrary time
constraints and achieve best R-D performance.

To develop such a complexity adjusting strategy, there are two
questions needed to be answered: the first one is how to control the
time consumed by FPME; the second one is how to optimally
allocate the given time among different blocks with different
motion intensity to achieve best R-D performance. For example,
more time should be allocated a active block rather than a still
block. Generally, there are two ways for early termination:

(1) Use a fixed number of search points for each cycle of
FPME on each block. This method can control the time consumed,
but it is unable to optimally allocate the time because it will waste
too much time on still blocks.

(2) Use a fixed threshold for R-D cost, i.e. SATD plus the bits
used by MV. This method can optimally allocated the resources
among different blocks, but the time consumed is not controllable
because active video sequences will consume more time to reach
the threshold. That is to say, for a given FPME time, different
video contents require different threshold values.

From the analysis above, both two methods are unable to solve
the two questions at the same time. Therefore, we proposed a
dynamic threshold on R-D cost with a automatic adjusting
mechanism. The basic idea is to adjust the threshold by learning
the relationship between the threshold and FPME time in previous
encoded frames.

The dynamic threshold th is defined as follow: if the average
R-D cost over all pixels in one block is smaller than th, search
stops.

Cost/(Pwidth ∗ Pheigth) < 𝑡ℎ (3)

where Pwidth and Pheigth are the width and height of current PU,
respectively.

The threshold th is adjusted frame by frame: assuming the
given time on FPME for certain sequence is Ttotal , the sequence

1401

has N frames. Firstly we dynamically allocate the time for each
frame by formula (4).

Tframe,alloc
𝑖 =

Ttotal−∑ Tframe,used
𝑗𝑖−1

𝑗=0

𝑁−𝑖
 (4)

where Tframe,alloc
𝑖 is the time allocated for the FPME in ith frame,

and Tframe,used
𝑗 is the actual time used by the FPME in jth frame.

Then we adjust the threshold for each frame by formula (5).
𝑡ℎ𝑖+1 = 𝑡ℎ𝑖 ∗ (Tframe,alloc

𝑖 /Tframe,used
𝑖) (5)

By applying this adjusting mechanism, if the actual time spent by
FPME for one frame Tframe,alloc

𝑖 is larger than expected Tframe,used
𝑖 ,

the threshold will increase, or decrease otherwise. Based on the
FPME time given , th will finally automatically get a balanced
value for different video contents.

4. EXPERIMENTAL RESULT

In order to evaluate the performance of the proposed FPME
algorithm and complexity adjustment strategy, we have three
experiments in this section.

All the experiments were run on Windows Server 2003 with
Intel Xeon E5420 at 2.50GHz. We have implemented the proposed
algorithm based on HM-4.0 (latest HM version has the same
FPME structure) and the coding structure is IPPP with QP = 32.
The test sequences are the 20 official test sequences in Table 1 [12].

A. Optimal scalability and cost-effectiveness
In order to evaluate the improved optimally scalable and cost-
effective algorithm proposed in Section 2, we record the average
R-D cost on every number of search points for several algorithms.
The results are shown in Fig. 4. CBFPS is a widely used algorithm
in [7]. RFSME is the algorithm in [10]. The curves in Fig. 4 show
that our proposed algorithm can achieve the least R-D costs, i.e.
best R-D performances, at an arbitrary number of search points.
Hence whenever the complexity adjusting strategy stop the
proposed algorithm, it will achieve the best R-D performance.

B. Testing the automatic complexity adjustment strategy
In order to show the scalability of the encoder, which is not
implemented in [11], we give a target FPME time Ttarget to the
encoder. By using the proposed FPME algorithm in section 2 and
the automatic adjusting strategy in section 3, the FPME algorithm
can automatically fit to the given time Ttarget, as shown in Table 3.
The results show that the automatic complexity strategy can
control the time consumed by FPME, with 0.50% error on average.

C. Using the proposed algorithm as a fast algorithm
As a side product, the proposed algorithm is also the best fast
algorithm if we set a fixed value to the threshold th in section 3.
Comparing with Full Fractional Pixel Search (FFPS), the time
spent on fractional-pixel motion estimation is reduced by a factor
of 54% on average. The average PSNR loss and bitrate increment
are 0.01 and 0.21% respectively. ∆PSNR, ∆Bitrate and ∆Time in
Table 4 are calculated as follow:

∆PSNR = PSNRproposed − PSNRFFPS
∆Bitrate = (Bitrateproposed − BitrateFFPS)/BitrateFFPS (6)

∆Time = (Timeproposed − TimeFFPS)/TimeFFPS
As shown in Table 5, the average number of search points for

each FPME is only 4.5 when keeping almost the same performance
with FFPS. By contrast, the number of search point is 10 for
CBFPS [9].

Fig. 4. Comparison of R-D costs with other algorithms on each

search point

Table 3. Complexity adjusting result

Class Time spent on
FPME

Error on time
control

A 99.97% * Ttarget 0.03%
B 100.53% * Ttarget 0.53%
C 100.68% * Ttarget 0.68%
D 100.68% * Ttarget 0.68%
E 100.63% * Ttarget 0.63%

Average 100.50% * Ttarget 0.50%

Table 4. Comparison of PSNR, bit-rate and time with FFPS

Class Average
ΔPSNR

Average
ΔBitrate

Average FPME
ΔTime

A -0.01 0.24% -51.85%
B -0.01 0.14% -54.66%
C -0.01 0.12% -43.87%
D -0.01 0.13% -37.29%
E -0.02 0.48% -81.91%

Average -0.01 0.22% -53.92%

Table 5. Comparison of Search Points(SPs) with FFPS

Class Average Search Points
Proposed FFPS Saved SPs

A 4.32 16 -74.61%
B 4.32 16 -74.60%
C 5.22 16 -69.29%
D 5.80 16 -65.91%
E 2.24 16 -86.82%

Average 4.50 16 -73.52%

5. CONCLUSIONS
This paper proposed a optimally scalable fractional-pixels motion
estimation algorithm based on cost-effective approach for HEVC,
where we have two major contributions.

According to our experimental results, the proposed algorithm
can outperform existing fast algorithms at any complexity
constrain. Moreover, the proposed algorithm can automatically
adjust its complexity to match different given time for FPME with
optimal R-D gain.

1402

6. REFERENCES
[1] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, and T.

Wiegand, “WD4: Working Draft 4 of High-Efficiency Video
Coding,” Document of Joint Collaborative Team on Video
Coding, JCTVC-F802, July 2011.

[2] K. McCann, K. McCann, S. Sekiguci, B. Bross, and W.-J.
Han, “HM4: High Efficiency Video Coding (HEVC) Test
Model 4 Encoder Description,” Document of Joint
Collaborative Team on Video Coding, JCTVC-F802, July
2011.

[3] P. Hill, T. K. Chiew, D. Bull, and N. Canagarajah,
“Interpolation free subpixel accuracy motion estimation,”
IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 12,
pp. 1519-1526, Dec. 2006.

[4] S. Dikbas, T. Arici, and Y. Altunbasak, “Fast motion
estimation with interpolation-free sub-sample accuracy,”
IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 7, pp.
1047-1051, July 2010.

[5] Q. Zhang, Y. Dai, and C. Kuo, “Direct techniques for
optimal subpel motion resolution estimation and position
prediction,” IEEE Trans. Circuits Syst. Video Technol., vol.
20, no. 12, pp. 1735-1744, Dec. 2010.

[6] Y.-J. Wang, C.-C. Cheng, and T.-S. Chang, “A fast algorithm
and its VLSI architecture for fractional motion estimation for
H.264/MPEG-4 AVC video coding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 17, no. 5, pp. 578-583, May 2007.

[7] Z. Chen, J. Xu, Y. He, and J. Zheng, “Fast integer-PEL and
fractional-PEL motion estimation for H.264/AVC,” J. Vis.
Commun. Image Representation, vol. 17, no. 2, pp. 264–290,
2006.

[8] H. Chao and J. Lu, “A high accurate predictor based
fractional pixel search for H.264,” in Proc. IEEE Int. Conf.
Image Process., pp. 2365-2368, Oct. 2006.

[9] Libo Yang, Keman Yu, Jiang Li and Shipeng Li, “Prediction-
based directional fractional pixel motion estimation for
H.264 video coding,” ICASSP 2005, vol. 2, pp. ii/901-ii/904,
Mar. 2005.

[10] Weiyao Lin, Panusopone, K., Baylon, D.M.; Ming-Ting Sun,
Zhenzhong Chen, Hongxiang Li, "A Fast Sub-Pixel Motion
Estimation Algorithm for H.264/AVC Video Coding,"
Circuits and Systems for Video Technology, IEEE
Transactions on , vol.21, no.2, pp.237-242, Feb. 2011.

[11] Jiyuan Lu, Peizhao Zhang, Hongyang Chao and Fisher, P.S.,
“On Combining Fractional-Pixel Interpolation and Motion
Estimation: A Cost-Effective Approach,” IEEE Trans.
Circuits Syst. Video Technol., vol. 21, no. 6, pp. 717-728,
June 2011.

[12] Frank Bossen, “Common test conditions and software
reference configurations,” Document of Joint Collaborative
Team on Video Coding, JCTVC-F900, July 2011.

1403

