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ABSTRACT 

Fractional-pixel motion compensation is still one of the most time-
consuming parts in the upcoming High Efficiency Video Coding 
(HEVC) standard. In this paper, we propose an optimally scalable 
and cost-effective fractional-pixel motion estimation (FPME) 
algorithm to optimally fit to different and varying constrains of 
computing resources. Our main contribution include two aspects. 
Firstly, an optimally scalable and cost-effective FPME algorithm 
based on a cost-benefit analysis is proposed, where we present a 
improved fractional-pixel MV prediction method and a new cost-
effective priority for each search point in HEVC. Secondly, a 
complexity adjustment strategy is delivered to enable the ability for 
the FPME to adjust its complexity to match different given 
constraints on time. Experiments show that the proposed algorithm 
can achieve best R-D performance while optimally adjust its 
complexity, based on any given time constraints. As a side product, 
the proposed algorithm can also serve as the best fast algorithm 
which has already reduced computing complexity by a factor 74% 
with almost no loss on PSNR and bitrates. 

 

 
Index Terms— motion estimation, fractional pixel, cost-

effective priority, video coding, HEVC 
 

1. INTRODUCTION 
High Efficiency Video Coding (HEVC) [1] [2] is the next-
generation video coding standard which is currently under 
development. Aiming to improve the coding efficiency, more and 
more technologies are incorporated in HEVC. But at the same time 
the encoder complexity is greatly increased. Fractional-pixel 
motion compensation, according to our analysis, is the most time-
consuming process for the encoder, which occupies 49% of the 
total encoding time on average. Hence it is important to optimize 
the fractional-pixel motion compensation for the overall encoder 
performance. 

In practice, available computational resources for encoder are 
often constrained and varying, especially for portable devices or 
real-time visual communications. Moreover, different devices are 
likely to have different computing capacities. Even for the same 
device, the available computing capacity for video encoder varies 
from time to time because of multitasking. How to adjust the 
encoder complexity adaptively with best R-D performance under 
constraint and varying computing resources is important for video 
encoder in practice. Therefore, researches on optimally scalable 
and cost-effective algorithms, which can adaptively control their 
speeds while keeping optimal performance under arbitrary 
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computational resources constraint, would likely be a must. This 
paper is just focusing on optimally scalable algorithms for FPME. 

Currently there are not many researches on HEVC aiming to 
propose scalable algorithms. In the related results on H.264, for the 
most time-consuming fractional-pixel motion estimation (FPME), 
some fast algorithms have been proposed. These fast FPME 
algorithms can be classified into two categories. The first category 
is the model-based algorithms [3]-[5]. These algorithms establish a 
mathematical model for fractional-pixel error surface and predict 
the optimal MV by finding the minimal of the model. Take Hill's 
method [3] for example, it tries to use a quadratic surface to fit the 
subpixel SAD surfaces. But the problem is that not all actual SAD 
surfaces can be well fitted. Moreover, these model-based 
algorithms is not scalable. That means we are unable to get better 
R-D performance if we have more time. The second category is the 
neighboring-MV based algorithms [6]-[10], which derive a 
predicted fractional-pixel MV as start position and then refine the 
MV by a small pattern such as diamond pattern. For these 
algorithm, almost all of the time is spent on refinement search. 
However, these algorithms are not designed to be optimally 
scalable. Optimally scalable means that it can effectively utilize 
every piece of time to achieve as much R-D gains as possible. The 
main reason for this defect is that different sub-pixels have quite 
different cost on interpolation, especially in HEVC, but most fast 
FPME algorithms ignore it. 

Actually, a fast algorithm based on cost-effective concept has 
been proposed for H.264 [11]. This method belongs to the 
neighboring-MV based algorithms. However, it remedy the 
inefficiency in refinement search by a cost-effective search order. 
The search order is defined according to cost-performance ratios, 
by simultaneously considering the interpolation costs and 
probabilities of being optimal match point for fractional pixels. It 
was proved that it can outperform the other existing fast algorithms 
in H.264. However, since HEVC introduced quite a different 
interpolation filter, we cannot directly apply the method in [11] to 
HEVC. Furthermore, algorithm in [11] does not have the 
mechanism to automatically adjust the complexity of FPME to 
match a given time for FPME, which is essential to solve above 
problems. Therefore, it is basically still a fast algorithm which may 
not fit to different constrains on computing resources for different 
video contents. 

In this paper, we try to solve all the problems mentioned above 
and thus proposed an optimally scalable and cost-effective FPME 
algorithm for HEVC. Differing from most fast algorithm, a special 
search order is adopted to check the sub-pixels with higher cost-
effective priority first. Moreover, the proposed algorithm will 
actually has the ability to automatically adjust its complexity in 
order to match any given FPME time on the fly.  

There are two major contributions in this paper: the first one is 
that we address an improve version of the optimally scalable and 
cost-effective algorithm by introducing a better fractional motion 
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vector prediction method which increases 10% prediction  
accuracy , and delivering a new priority table for refinement search  
according to the new interpolation process in HEVC. The second 
one is that we propose a strategy to automatically adjust the 
complexity of FPME, which is just a problem and shortage not 
solved by [11]. After this, we can really have an optimally scalable 
and cost-effective FPME to fit the different constrains on 
computing resources. 

The rest of this paper is organized as follows. Section 2 
introduces our first contribution on addressing an improve version 
of the optimally scalable and cost-effective algorithm for HEVC. 
Section 3 presents our second contribution on automatic FPME 
complexity adjusting strategy. Experimental results and 
conclusions are given in section 4 and section 5 respectively.  

 
2. OPTIMALLY SCALABLE AND COST-EFFECTIVE 

ALGORITHM FOR HEVC 
In this section, we will introduce the first contribution in this paper: 
an improved version of the optimally scalable and cost-effective 
algorithm for HEVC. It includes two major improvements  
compared with the one in [11]. The first improvement is that we 
bring a better fractional-pixel MV prediction method which 
increases 10% prediction accuracy. And the second improvement 
is that we deliver a new priority table for refinement search 
according to the new interpolation process in HEVC. 

Our proposed algorithm belongs to the second category of 
fractional-pixel motion estimation (FPME) algorithms, i.e. the 
neighboring-MV based algorithms, which consist of a fractional-
pixel motion vector (FPMV) prediction and a refinement search. 
 
2.1 The improved FPMV prediction method 
According to our analysis, the accuracy of the fractional-pixel MV 
prediction method in [11] is no more than 30% for sequence with 
intense motion in HEVC. In addition, we have following 
observation: the fractional-pixel part of the MV predictor which is  
obtained by  AMVP [2] method has a high correlation with the 
final optimal fractional-pixel MV. However, it is infeasible to get 
the MV predictor before FPME, because the MV predictor is 
selected from the MV predictor candidate list [2] as the one closest 
to the final optimal MV which is obtained after integer-pixel and 
fraction-pixel motion estimation. In order to solve this dilemma, 
we select a 'rough' MV predictor  MVrough from the candidate list 
as the one closest one to MVinteger which is obtained by integer-
pixel motion estimation. The fractional-pixel part of MVrough  is 
then used as the predicted FPMV, which can be extracted by the 
formula below: 

MVfrac_pred = �MVrough − MVinteger� mod 4           (1) 

where MVfrac_pred is the predicted FPMV that we used as a start 
position in our proposed FPME algorithm. 

To prove that the proposed predicted method is better, the 
proposed predicted method is compared with the one in [11]. In the  
experiments, we use the final fractional-pixel motion vector 
(FPMV) by Full Fractional Pixel Search (FFPS) as a baseline to 
evaluate the accuracy of the predictors obtained by our proposed 
method and the one in [11]. 

The experiment has been performed on 20 sequences in Table 
1. Table 2 shows that how many percentages of the predicted 
FPMVs are exactly the final FPMVs obtained by FFPS. We can 
see that the proposed prediction method improve the prediction 
accuracy by 10% on average. Especially for the sequences with 

intensive motion in class A and B, the proposed prediction method 
improves prediction accuracy by 15%-20%. 

Table 1. Sequences for analyzing the accuracy of predicted 
fractional-pixel motion vector 

Class Resolution Sequence 
A 2560x1600 PeopleOnStreet, Traffic 

B 1920x1080 BasketballDrive, BQTerrace, 
Cactus, Kimono1, ParkScene 

C 832x480 BasketballDrill, BQMall, 
PartyScene, RaceHorses 

D 416x240 BasketballPass, BlowingBubbles, 
BQSquare, RaceHorses 

E 1280x720 Vidyo1, Vidyo3, Vidyo4 
 

Table 2. Prediction accuracy comparison 

Class 
Predicted FPME equals final FPME 

proposed method in [11] accuracy 
improvement 

A 45.81% 29.84% 15.97% 
B 47.65% 23.28% 24.37% 
C 40.76% 40.07% 0.69% 
D 33.65% 32.91% 0.74% 
E 75.57% 67.60% 7.97% 

Average 48.69% 38.74% 9.95% 
 
2.2 The new cost-effective refinement search order for HEVC 
The cost-effective algorithm in [11] gives a refinement search 
order for the fractional-pixel search points in the same refinement 
search pattern. But we cannot directly apply the order to HEVC 
because the new interpolation filter in HEVC changes it. The 
search order is relative to the cost-performance ratios of every 
fractional-pixel search point. The search point with highest 
performance and lowest cost will be searched first. Here we will 
give a clear definition to the cost-performance ratio of each 
fractional pixel, which is implicit in [11]. The cost-performance 
ratio of the fractional pixel at (x, y) is defined as: 

CP(x,y) = Cost(x,y)/Probability(x,y)                     (2) 

where Probability(x,y) is the probability of being the best MV for 
search position (x, y). Cost(x,y) is the computational complexity of 
interpolation for the point (x, y). 

However, the new 8-tap DCT-based interpolation filter in 
HEVC changes the interpolation costs and probabilities, which 
makes the cost-performance ratios different from those in H.264. 
Hence the search order is different form that in [11]. 

In order to update the cost-effective refinement search order for 
HEVC, we need to calculate the cost-performance ratio define in 
formula (3). It involves two aspects of work: obtain the new cost 
table and the new probability table for each fractional-pixel search 
position in HEVC. 

We start with the new cost table. All 1/4 accuracy fractional 
pixels are depicted in Fig. 1(a). For better description of the new 
interpolation process in HEVC, we classify those fractional pixels 
into two categories based on their computational complexities on 
interpolation. The first category includes 6 points: a, b, c, d, h and 
n. All these points are interpolated from 8 integer pixels 
horizontally or vertically. The second category includes 9 points: e, 
f, g, i, j, k, p, q and r. These points are interpolated from 8 
fractional pixels in the first category. For example, if we want to 
interpolate the point e, we must interpolate 8 extra fractional pixels 
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in advance as an intermediate step. That is to say, the 
computational complexity of the points in the second category is 8 
times that of the points in the first category. The cost to generate 
each fractional pixel is shown in Fig. 1(b), which is quite different 
from the one for H.264 in [11]. 

 
Fig. 1. (a) Integer pixels (blocks with upper-case letter) and 

fractional pixels (blocks with lower-case letter).  (b) Computational 
complexity of interpolation for fractional pixels. 

 
A new interpolation method will generate different fractional 

pixel values, which may lead to the differences between the best 
match points in HEVC and H.264. To ensure we get the correct 
probabilities for each fractional pixel of being best match point, we 
update the probability table for HEVC, based on the distribution of 
optimal fractional-pixel MV (FPMV) of the sequences in Table 1. 
The new probability table is shown in Fig. 2. 

Combining the new cost table in Fig. 1(b) and the new 
probability table in Fig. 2, we can recalculate the cost-performance 
ratio for each search point by formula (2) and thus give a new 
search order, i.e. search priority. The new search order for HEVC 
is shown in Fig. 3. 

 
Fig. 2. The distribution of optimal fractional-pixel MV (FPMV) of 

the sequences in Table 1. (a) Graph  (b) Table 
 

2.3 Algorithm description 
Step 1: Choose start search point with smaller R-D cost 

between the predicted position and integer-pixel position. 
Step  2: Refinement search around the start search point. 
Step 2.1: In the diamond pattern, take one search point that 

have the smallest value according to Fig. 3 as current search point. 
Step  2.2:  Interpolate before checking current search point. 
Step  2.3:  Match the current search point. 
Step 2.4: If current search point have smaller cost than the 

center point, then the opposite search point is skipped ( based on 
the error surface unimodal assumption in [7] ). 

Step 2.5: Go back to Step 2.1 until all search points in the 
current diamond pattern are checked. 

Step 3: If the optimal search point is in the center of the 
diamond pattern, the search stops. Otherwise, the diamond pattern 
moves to a new center and go back to Step 2.1. 

 
Fig. 3. Cost-effective priority table for fractional-pixel search 

points in HEVC (smaller value means higher priority). 
 

3.  FPME COMPLEXITY ADJUSTING STRATEGY 
In section 2, we have proposed an optimally scalable and cost-
effective fractional-pixel motion estimation (FPME) algorithm for 
HEVC. However, if we cannot find a FPME complexity adjusting 
strategy to fit to any given FPME time, it is basically still a fast 
algorithm which may not fit to different constrains on computing 
resources and different video contents. In this section, we will 
introduce our second contribution: a complexity adjustment 
strategy. It can precisely control and optimally allocate the time 
consumed by the proposed FPME, in order to match arbitrary time 
constraints and achieve best R-D performance. 

To develop such a complexity adjusting strategy, there are two 
questions needed to be answered: the first one is how to control the 
time consumed by FPME; the second one is how to optimally 
allocate the given time among different blocks with different 
motion intensity to achieve best R-D performance. For example, 
more time should be allocated a active block rather than a still 
block. Generally, there are two ways for early termination:  

(1) Use a fixed number of search points for each cycle of 
FPME on each block. This method can control the time consumed, 
but it is unable to optimally allocate the time because it will waste 
too much time on still blocks. 

(2) Use a fixed threshold for R-D cost, i.e. SATD plus the bits 
used by MV. This method can optimally allocated the resources 
among different blocks, but the time consumed is not controllable 
because active video sequences will consume more time to reach 
the threshold. That is to say, for a given FPME time, different 
video contents require different threshold values. 

From the analysis above, both two methods are unable to solve 
the two questions at the same time. Therefore, we proposed a 
dynamic threshold on R-D cost with a automatic adjusting 
mechanism. The basic idea is to adjust the threshold by learning 
the relationship between the threshold and FPME time in previous 
encoded frames. 

The dynamic threshold th is defined as follow: if the average 
R-D cost over all pixels in one block is smaller than th, search 
stops. 

Cost/(Pwidth ∗ Pheigth) < 𝑡ℎ                       (3) 

where Pwidth and Pheigth are the width and height of current PU, 
respectively. 

The threshold th is adjusted frame by frame: assuming the 
given time on FPME for certain sequence is Ttotal , the sequence 

1401



has N frames. Firstly we dynamically allocate the time for each 
frame by formula (4).  

Tframe,alloc
𝑖 =

Ttotal−∑ Tframe,used
𝑗𝑖−1

𝑗=0

𝑁−𝑖
              (4) 

where Tframe,alloc
𝑖  is the time allocated for the FPME in ith frame, 

and Tframe,used
𝑗  is the actual time used by the FPME in jth frame. 

Then we adjust the threshold for each frame by formula (5). 
𝑡ℎ𝑖+1 = 𝑡ℎ𝑖 ∗ (Tframe,alloc

𝑖 /Tframe,used
𝑖 )                (5) 

By applying  this adjusting mechanism, if the actual time spent by 
FPME for one frame Tframe,alloc

𝑖  is larger than expected Tframe,used
𝑖 , 

the threshold will increase, or decrease otherwise. Based on the 
FPME time given , th will finally automatically get a balanced 
value for different video contents. 

 
4. EXPERIMENTAL RESULT 

In order to evaluate the performance of the proposed FPME 
algorithm and complexity adjustment strategy, we have three 
experiments in this section.  

All the experiments were run on Windows Server 2003 with 
Intel Xeon E5420 at 2.50GHz. We have implemented the proposed 
algorithm based on HM-4.0 (latest HM version has the same 
FPME structure) and the coding structure is IPPP with QP = 32. 
The test sequences are the 20 official test sequences in Table 1 [12].  

A. Optimal scalability and cost-effectiveness 
In order to evaluate the improved optimally scalable and cost-
effective algorithm proposed in Section 2, we record the average 
R-D cost on every number of search points for several algorithms. 
The results are shown in Fig. 4. CBFPS is a widely used algorithm 
in [7]. RFSME is the algorithm in [10].  The curves in Fig. 4 show 
that our proposed algorithm can achieve the least R-D costs, i.e. 
best R-D performances, at an arbitrary number of search points. 
Hence whenever the complexity adjusting strategy stop the 
proposed algorithm, it will achieve the best R-D performance. 

B. Testing the automatic complexity adjustment strategy 
In order to show the scalability of the encoder, which is not 
implemented in [11], we give a target FPME time Ttarget  to the 
encoder. By using the proposed FPME algorithm in section 2 and 
the automatic adjusting strategy in section 3, the FPME algorithm 
can automatically fit to the given time  Ttarget, as shown in Table 3.   
The results show that the automatic complexity strategy can 
control the time consumed by FPME, with 0.50% error on average. 

C. Using the proposed algorithm as a fast algorithm 
As a side product, the proposed algorithm is also the best fast 
algorithm if we set a fixed value to the threshold th in section 3. 
Comparing with Full Fractional Pixel Search (FFPS), the time 
spent on fractional-pixel motion estimation is reduced by a factor 
of 54% on average. The average PSNR loss and bitrate increment 
are 0.01 and 0.21% respectively.  ∆PSNR, ∆Bitrate and ∆Time  in 
Table 4 are calculated as follow:  

∆PSNR = PSNRproposed − PSNRFFPS 
∆Bitrate = (Bitrateproposed − BitrateFFPS)/BitrateFFPS       (6) 

∆Time = (Timeproposed − TimeFFPS)/TimeFFPS 
As shown in Table 5, the average number of search points for 

each FPME is only 4.5 when keeping almost the same performance 
with FFPS. By contrast, the number of search point is 10 for 
CBFPS [9]. 

 
Fig. 4. Comparison of R-D costs with other algorithms on each 

search point 
 

Table 3. Complexity adjusting result 

Class Time spent on 
FPME 

Error on time 
control 

A 99.97% *  Ttarget 0.03% 
B 100.53% *  Ttarget 0.53% 
C 100.68% *  Ttarget 0.68% 
D 100.68% *  Ttarget 0.68% 
E 100.63% *  Ttarget 0.63% 

Average 100.50% *  Ttarget 0.50% 
 

Table 4. Comparison of PSNR, bit-rate and time with FFPS 

Class Average 
ΔPSNR 

Average 
ΔBitrate 

Average FPME 
ΔTime 

A -0.01 0.24% -51.85% 
B -0.01 0.14% -54.66% 
C -0.01 0.12% -43.87% 
D -0.01 0.13% -37.29% 
E -0.02 0.48% -81.91% 

Average -0.01  0.22% -53.92% 
 

Table 5. Comparison of Search Points(SPs) with FFPS 

Class Average Search Points 
Proposed FFPS Saved SPs 

A 4.32  16 -74.61% 
B 4.32  16 -74.60% 
C 5.22  16 -69.29% 
D 5.80  16 -65.91% 
E 2.24  16 -86.82% 

Average 4.50  16 -73.52% 
 

5. CONCLUSIONS 
This paper proposed a optimally scalable fractional-pixels motion 
estimation algorithm based on cost-effective approach for HEVC, 
where we have two major contributions. 

According to our experimental results, the proposed algorithm 
can outperform existing fast algorithms at any complexity 
constrain. Moreover, the proposed algorithm can automatically 
adjust its complexity to match different given time for FPME with 
optimal R-D gain. 
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