
MOTION ESTIMATION FOR VIDEO CODING BASED ON SPARSE REPRESENTATION 
 

Yanfei Shen1,2, Jintao Li1, Zhenmin Zhu1 
1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P.R. China 

2 University of Chinese Academy of Sciences, Beijing, P.R. China 
{syf, jtli, zmzhu}@ict.ac.cn 

 
ABSTRACT 

 
This paper describes a motion estimation algorithm based on 
sparse representation, which can be applied in video coding 
to reduce the temporal redundancy. The sparse coefficients 
are firstly calculated in support region by orthogonal 
matching pursuit (OMP) algorithm using the reference 
blocks as dictionary elements, and then these optimal sparse 
coefficients are utilized to predict the current block. To get 
the same prediction in decoder, the number of iterations in 
OMP is transmitted to decoder as side information. 
Simulation results show that gain up to 2.87dB in terms of 
the PSNR when compared with traditional translational 
motion estimation model. 
 

Index Terms—motion estimation, sparse representation, 
video coding 
 

1. INTRODUCTION 
 
Motion estimation (ME) is the essential element in video 
coding which is used to reduce to temporal redundancy. The 
performance of ME algorithms has a great influence on the 
video coding efficiency. Therefore, in the last few decades, 
much research work is done to improve the prediction 
accuracy of ME algorithms, including variable block size, 
complex affine motion model, fractional motion vector 
precision and sub-pixel interpolation filter etc. 

However, there are two unsolved key problems which 
affect the video coding efficiency. The first is motion 
estimation accuracy problem. In most of the popular video 
coders, such as H.264[1], HEVC[2] etc., motion estimation 
is based on rectangular block, called macro block, which is 
compared with the corresponding block and its adjacent 
neighbors in the reference frames to create a motion vector 
that represents the movement of objects. These motion 
estimation algorithms assume that the motion in video 
sequences is rigid and generally a pure translation motion 
model is used, but objects in the real world undergo more 
complicated motions, it is difficult for a pure translation 
motion model to adapt the complex motion of nature video 
sequences. Although various efforts have been made to use 
more complex motion models for motion compensated 
prediction, for example, one of the early proposals for the 

H.264/AVC standard was a codec based on an affine motion 
model[3][4]. However, it is difficult to estimation the affine 
motion parameters from the reconstructed video sequences. 
The second is the coding overhead for motion parameter. 
For pure translation motion model, smaller sub-block can 
improve motion estimation precision, such as, in 
H.264/AVC video coding standard, the smallest sub-block is 
4x4, but the side information of motion vectors is increased 
correspondingly. In addition, although affine motion model 
can provide better motion representation than translation 
motion model, its disadvantage is the increased number of 
motion vector parameters and motion vector bit rate, the 
encoded motion vectors consume up to 25% of the total 
frame bit rate [5]. 

In the past decade, sparse representation based 
algorithms have sparked a great research interest for signal 
processing and image compression with numerous 
applications, e.g. image prediction [6], image denoising [7], 
restoration [8], compression [9], and more. The main idea 
behind sparse representation is that a signal ny R∈  can be 
represented as a linear combination of few prototype signals 
from a dictionary 

n mD R ×∈ , which contains a collection of 
m  atoms n

id R∈  that are building blocks of the 
representation. A prediction algorithm based on sparse 
representation has been introduced in [10], in this method, 
the basic functions which best approximate a causal 
neighborhood are used to extrapolate the signal in the region 
to predict. An online dictionary learning method is proposed 
to address the problem of intra image prediction based on 
signal expansion on overcomplete dictionaries [6]. Two 
spatial image prediction methods based on nonnegative 
matrix factorization (NMF) and locally linear embedding 
(LLE) have been introduced in [11], these two methods 
approximate the current block as a linear combination of 

-k nearest  neighborhood of the input block. All of these 
algorithms in various image processing assume that the 
natural images are composed of only a few structural 
primitives. One has thus to first learn these primitives and 
then decompose the image on the set of primitives to extract 
the representative features of the image.  

In this paper, we will propose a ME algorithm based on 
sparse representation to reduce the time redundancy in video 
coding. If we imagine the reference blocks as dictionary 
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atoms and the current predict block as prediction vector, the 
block matching process is really sparse representation 
process where the sparse coefficient is one for full pixel 
motion estimation. In our proposed method, motivated by 
sparse approximation techniques introduced in [10], the 
neighborhood known pixels of the current block are firstly 
sparse coding by OMP method [12], then the same sparse 
coefficients are used to predict the current block. The 
number of sparse coefficients decides the used motion 
models. So the proposed method can adapt the complex 
motion and texture features of natural video sequences. In 
addition, because the sparse coefficients are calculated by 
known pixels, decoder can repeat the identical operations. It 
is not necessary to transmit side information of sparse 
coefficients. 

The rest of this paper is organized as follows. In section 
2, we will recall the algorithm for sparse representation by 
OMP, and its relationships with traditional ME method. Our 
proposed ME algorithm based on sparse representation will 
be described in section 3. Section 4 gives the experimental 
results in terms of prediction quality and some simple 
analysis. Finally, we conclude this paper in section 5. 
 

2. SPARSE REPRESENTATION AND MOTION 
ESTIMATION 

 
The basic model of sparse representation suggests that the 
nature signals can be efficiently explained as linear 
combinations on an overcomplete dictionary, where the 
linear coefficients are sparse (most of them are zeros). 
Formally, if x  is a column signal and D  is the dictionary 
(whose columns are the atom signals), the sparse 
representation can be described by the following sparse 
approximation problem, 

2

2 0
min . .Arg x D s t kαα α α= −       ≤              (1) 

In this formulation, α is the sparse representation coefficient 
of signal x , k  is sparse degree of α , which is the 0  
pseudo-norm counting the non-zero entries. The solution to 
this approximation problem can be efficiently solved using 
several available approximation techniques, including OMP, 
Basis Pursuit, FOCUSS, and others [13]. 

The traditional ME algorithm can be viewed as a 
special case of sparse representation, where the observed 
signal x  of sparse representation corresponds to the current 
block of motion estimation and the dictionary D  of sparse 
representation corresponds to the reference blocks in the 
search window of reference frame. Motion estimation 
process is to search one atom in dictionary which is the most 
relevant to the current block and the index of selected atom 
is equivalent to the output motion vectors. For integer pixel 
motion estimation, the number of sparse coefficients is one 
and its value is also one integer, that is to say, 

0
1α = . For 

fractional pixel translational motion estimation model, the 
sparse coefficients are relevant to the coefficients of 
interpolation filter f which is used to generate the fractional 
pixels value and the accuracy of motion vectors as follows, 

2

2 0
min . .Arg x Df s t f kαα α α= −       ≤             (2) 

Where f is the coefficient of interpolation filter. For 
example, if bilinear interpolation {0.5,0.5}f = is used in 
half pixel motion estimation, the optimal sparse coefficients 
will be {0.5,0.5}  and

0
2f α = . For other complex motion 

estimation models, including polynomial affine motion, 
sparse representation can be optimal solution and can be 
adapt to various motion and texture context. 
 
3 MOTION ESTIMATION ALGORITHM BASED ON 

SPARSE REPRESENTATION 
 
This section firstly describes the main principle of the ME 
algorithm based on sparse representation and then discusses 
how this algorithm can be applied to reduce the time 
redundancy in video coding. 

Let C  denote the current block to be predicted by 
motion estimation algorithm, and its causal neighborhood 
S used as sparse representation support, as shown in Fig.1. 
The basic principle of our proposed method is to first search 
for a good approximation of known pixels in S region and 
to calculate its sparse representation coefficients, and then 
keep the same procedure to estimate the unknown pixel 
value in C region. 

CS

SS

 
Fig.1 The current Block C and its support region S 

Let the pixel value of the support region S  and current 
block C  be arrayed in column vector sb  and cb , the vector 
b  is finally comprised of sb  and cb  as follows, 

s

c

b
b

b
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                      (3) 

Let D denote sparse representation dictionary by a matrix of 
dimension of N M× , where N  is equal to the number of 
elements in vector b  and M  is decided by the size of 
search windows in traditional ME algorithm. The columns of 
dictionary D  are constructed by the same method as vector 
b . The use of causal neighborhood S  guarantees that the 
decoder can construct the same dictionary. The dictionary 
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matrix D  is then assumed to be formed by two sub-matrices 
sD  and cD  as follows, 

s

c

D
D

D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                      (4) 

The basic idea of our method is to first search for a linear 
combination of atoms taken from the dictionary sD , which 
best approximates the pixel value in the support region S , 
and then to keep the same linear combination, including the 
same indexes of selected atoms and the same sparse 
coefficients, to estimate the pixel value in current block C . 
Sparse representation algorithms aim at solving the 
approximation minimization as 

2

2 0
min . . mins sb D s tα α−                                (5)

 
Where α is sparse coefficient. In practice, one actually seeks 
an approximate solution which satisfied: 

0
min . . s s p

s t b Dα α ε       − ≤                       (6)
 

for some 0ε ≥ , characterizing an admissible reconstruction 
error. The norm p  is usually 2. This problem is known to be 
NP-hard and different sub-optimal strategies have to be used. 
There are generally based on convex relaxation of the 
problem, non-convex local optimization or greedy search 
algorithms. Greedy algorithms, including MP and OMP, 
have been introduced as heuristic algorithms to find 
approximate solutions with tractable complexity. 

In this paper, the OMP algorithm will be used and it 
proceeds as follows. At the first iteration, 0 0α =  and an 
initial residual vector 0 0s sr b D α= − is computed. At 
iteration k , in order to find a better approximation for sb , 
the algorithm will determine an atom k

ia  to be selected from 
dictionary sD  which has maximum correlation with the 
previous residual vector 1kr − . In particular, the selection is 
based on the inner products between residual vector 1kr − and 
the atom id of dictionary sD  

1arg max ,k T
i i k i i sa r d d D−=     ∈                   (7) 

Let k
sD denote the compacted matrix containing all the atoms 

selected in previous iterations 
1k k k

s s iD D a−= ∪                                   (8) 
The new coefficient vector and residual vector at the 
kth iteration are given as follows 

1( )kT k kT
k s s s sD D D bα −=                                (9) 

k s s kr b D α= −                                    (10) 
There are several natural stopping criteria for OMP, 
including a fixed number of iterations or a threshold of 
residual magnitude. However, these stopping criteria is not 
suitable to our proposed algorithm, because the sparse 

coefficients which lead to small energy of residual in support 
region are not necessarily accurately predict the current 
block. In this paper, we will use the energy of residual on the 
current block as the stopping criteria, that is, if it is smaller 
than some threshold, the OMP will stop. The number of 
selected atoms (also the number of iteration k ) that 
minimize the above criterion is transmitted to the decoder as 
side information. The decoder similarly runs the algorithm 
with the same dictionary and the same support region which 
has been decoded and reconstructed previously, the number 
of selected atoms can thus be used as stopping criterion, so 
the motion estimation algorithm at the encoder and the 
motion compensation algorithm at the decoder can get the 
same sparse coefficients optα  which can be used to predict 
the current block. The pixel value of current block is then 
calculated by multiplying the dictionary cD  by optα as. 

c c optb D α= . The complete mathematical description of our 
proposed motion estimation algorithm based on sparse 
representation is summarized in Table I. 

Table I    ME Algorithm Based on Sparse Representation 
Input: sb , sD , cD , k  

Output: Predicted values pb , the number of iteration *k  

1) Initialization: 0k = , 0 0α = , 0 sr b= , k
sD φ=  

2) ME based on sparse representation 
Do until k K=  

1k k= +  
 Find an atom k

ia of dictionary sD  that is most strongly 

correlated with the residual kr : 

arg max ,k t
i i k i i sa r d d D= ∈  

1k k k
s s iD D a−= ∪  

 Find the best coefficients for approximating the pixels in 
support region with the selected atoms k

sD so far 

2
arg min k

k s sa b D α= −  

 Calculate the energy of residual on current block by 
sparse coefficients ka  

2
arg mink c c kE b D α= −  

 Update the residual 
k

k s sr b D α= −  
end do 
Select the optimum *k that minimize the energy of residual 

kE  
3) Prediction of current block 

Calculate the prediction pixel values of the current block 
*p c k

b D α=  

4) Output 
Predicted values pb  of current block cb , the number of 

iteration *k  
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4 EXPERIMENTAL RESULTS 
 
In this section, in order to evaluate the performance of our 
proposed method, the proposed method was tested using 
different standard video sequences, including foreman, 
coastguard, Waterfall etc with CIF resolution. The 
traditional translational motion model with sub-pixel motion 
vector accuracy is used and compared. The block size is set 
8x8 pixels and the search range of motion estimation 
is 16± pixels. The pixel value in sub-pixel location is 
generated by bilinear interpolation filter and the search 
method in translational motion model is full search 
algorithm. The reference frame used in our experiment is the 
original frame and the extrapolation pixel beyond the image 
edges is repeated by the nearest pixel. The size of the current 
block and support region is shown in Fig.2. 

 
Fig.2 the size of current block sand support region 

 
The performance of motion estimation algorithm is 

measured by PSNR between the current original frame and 
the reconstructed frame, as shown in Table II. It is 
demonstrated that our proposed motion estimation algorithm 
can outperform the traditional translational motion 
estimation (TME) method in most video sequences with 
complex texture, such as waterfall, flower and container etc; 
the most gain can get 2.87dB. The temporal redundancy can 
be efficiently reduced by the sparse representation for video 
coding. However, for video sequences with strong edge, 
such as bus and tempete, because the texture property of the 
support region and current block may be inconsistent, it is 
less efficient to use sparse coefficients trained from support 
region to predict the current block, the performance of our 
proposed motion estimation is lower than the traditional 
translational motion estimation method. 

To guarantee the same prediction for the current block 
in video decoder, the number of iteration for every block is 
needed to be transmitted as side information. The 
distribution of iteration number is shown in Fig.3. If the 
number of iteration is one, our proposed motion estimation 
algorithm corresponds to traditional translational motion 
model with full pixel accuracy, otherwise, it corresponds to 
fractional pixel motion estimation algorithm, but the 
difference between them is that the coefficients of 
interpolation filters used to generate fractional pixel value in 

our proposed method are calculated in real time and can be 
adapt to real motion model hidden in video sequence. In 
addition, the bit overhead of transmitting this side 
information is lower than motion vectors. Fig.3 shows that 
the major of iteration numbers is less than six, that is, the 
current block is predicted by linear combination of less six 
reference block, this is coincide with the length of 
interpolation filter defined in video coding standard H.264. 

Table II PSNR performance of TME algorithm  and proposed 
motion estimation algorithm (dB) 

sequence TME Proposed Gain 

Forman 36.65 36.90 0.25 

Flower 30.75 32.66 1.91 

Bus 27.45 26.24 -1.21 

Container 38.44 41.31 2.87 

Coastguard 33.15 33.19 0.04 

Tempete 29.89 28.69 -1.2 

Waterfall 37.46 39.57 2.11 

 
In traditional translational motion model, the 

coefficients of interpolation filter are fixed and there are 
many fast motion estimation algorithms, so its computational 
burden is lower. The coefficients of sparse representation 
are calculated in real time for our proposed motion 
estimation algorithm, so it has more computation complexity. 
However, there are many fast OMP algorithms [14], such as 
stage wise orthogonal matching algorithm, which can be 
used to speed up our algorithm. 

 
Fig.3 the distribution of iteration number 
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