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ABSTRACT

In the context of test automation for automobiles, the com-

pressed video recording of infotainment system components

like navigation devices is a required practice. These record-

ings are then analyzed, archived, and forwarded to the re-

sponsible engineering teams. In order to compress naviga-

tion video sequences efficiently, the dominant rotational mo-

tion must be compensated properly. However, the process of

Rotational Motion Estimation (RME) is hindered by the pres-

ence of static areas like info boxes and overlay graphics. We

analyze this problem and show how to build masks for static

areas in order to allow high speed feature transforms to be

applied. With the acquired fast and accurate RME, we then

demonstrate how to significantly reduce the required bitrate

during HEVC encoding of navigation sequences.

Index Terms— Rotational Motion Estimation, HEVC,

Video Compression, Background Subtraction

1. INTRODUCTION

Navigation devices in automobiles have continuously risen in

complexity over the recent decade, and so has the need to

assert their correct system behavior. For automotive tests, it

is common to record the system video output in compressed

form, so that analysis and archiving can take place afterward.

Typically, the only information available from the system un-

der test is the pixel information at the display output. Infor-

mation about frame motion can therefore not be retrieved di-

rectly. This paper aims at fast and precise estimation of this

motion for the purpose of efficient video compression.

As we showed in [1], information about the position of

static areas is essential for feature-based motion estimation.

In the following, we will extend the state of the art on navi-

gation sequence encoding in three main aspects. Firstly, we

evaluate more general ways to gather information about the

positions of static areas. This allows us to handle special use

cases where H.264/AVC skip mode information may be in-

sufficient for the creation of static area masks. For example,

low QPs in combination with slightly transparent static ar-

eas may prevent skip mode selection due to non-zero trans-

form coefficients. Secondly, we demonstrate how the masks

can be leveraged for stabilizing the process of Rotational Mo-

tion Estimation (RME). We compare SIFT [2] and ORB [3]

based RME and show how the constrained but real-time capa-

ble ORB transform can be used for fast RME on 2D and 3D

navigation sequences. Thirdly, we integrate our RME scheme

into the HEVC video coding standard [4] and show that the

required bitrates can be reduced by up to 9.6%. Note that our

scheme is not confined to navigation sequences but applies to

any video data with (semitransparent) text or symbol overlays

of significant size.

Rotational Motion Estimation (RME) in navigation se-

quences can be seen as a subtype of global motion estima-

tion, for which authors have suggested both vector-based and

pixel-based approaches [5][6], of which the latter is recom-

mended due to its accuracy [7]. To estimate higher order

global motion between two frames, it is common to detect

and match features on both frames, which can then be used to

solve for the correct affine motion parameters [8]. Typically,

feature transforms like SIFT [2] or SURF [9] are used for

this purpose. However, these come with considerable com-

putational requirements. Computational complexity can be

reduced by using KLT feature tracking as in [10], but this in-

troduces an upper bound on detectable rotational motion due

to rotational variance. Navigation sequences may show ro-

tations up to 30 degrees between consecutive frames, which

makes KLT feature tracking difficult and error prone. In 2011,

there has been a promising approach by Rublee et al. [3],

Fig. 1. Static areas in Basel2D (left) and Insbruck3D (right).
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Fig. 2. Example of SIFT-based RME on Basel3D. The left image pair depicts a successful RME, where SIFT matching is

constrained by hand to the map area. The right image pair shows how RME fails when SIFT is applied to the whole frame area.

introducing the so-called ORB transform for robotic vision.

Based on the FAST detector [11] and BRIEF descriptor [12],

it allows rotationally invariant feature matching at real-time

speeds on standard PC systems. Like SIFT or SURF, ORB

cannot be applied to navigation sequences directly: the fea-

ture detection and matching process is severely impaired by

static areas, since the feature count in static areas as well as

their low noise in localized position tend to destabilize com-

mon outlier removal schemes like RANSAC [13]. As a result,

the estimation of motion parameters of the map area fails.

In order to cope with this problem, we found that Back-

ground Subtraction (BGS) techniques allow precise estima-

tions of position and size of static areas. BGS techniques

have been intensively studied in the past [14][15][16], most

notably for the purpose of video surveillance and object track-

ing. In the scope of video compression, Glantz et al. showed

in [10] that BGS techniques can be used to efficiently identify

separate moving objects for sprite-based frame processing us-

ing KLT-tracking. In the following, we will show how BGS

techniques can be combined with rotational invariant feature

transforms such that 1) real-time processing remains feasible

and 2) estimations can be carried out in a robust way.

2. RME FAILURE ANALYSIS

Before describing our proposed solution for fast and robust

Rotational Motion Estimation (RME), it is necessary to an-

alyze in detail why state of the art feature-based parameter

estimation shows severe cases of failure for navigation se-

quences. We found that the rejection of map features as

outliers after matching is a frequent behavior, which results

 

 

ORB

SIFT

N
u
m

b
er

o
f

fa
il

ed
es

ti
m

at
io

n
s

Basel3D Basel2D Insbruck3D
0

10

20

30

Fig. 3. Number of failing RMEs in each sequence when SIFT

or ORB is applied on the whole frame. Failures are caused by

static areas, which distract the outlier removal process.

in wrongly estimated motion parameters and thus in failing

RMEs. Note that outlier removal is a required practice since

the matching process is inherently prone to errors. This erro-

neous removal is due to the fact that feature matches in static

areas may very well reach a number close to the number of

matches on the map, since map matches are harder to obtain

and more prone to false matching. Moreover, non-moving

features typically show low noise in their detected positions,

and thus influence the RANSAC reprojection error metric.

In the following, we use three typical 800x480 naviga-

tion sequences for demonstration: Basel2D, Basel3D and Ins-

bruck3D. The sequences are real recordings from existing

navigation devices and consist of 200 frames each. As Fig. 1

shows, their content covers 2D and 3D map renderings as well

as both small and large static area sizes. Fig. 2 gives exam-

ples on a successful and a failing RME. In the left image pair,

SIFT transform is restricted to the map area by hand mask-

ing, excluding any static areas from search. As expected, this

allows accurate estimation of the map motion, which is visu-

alized in Fig. 2 by the luminance difference between the cur-

rent and the warped preceding frame (second image). How-

ever, SIFT applied to the whole frame gives many features in

static areas, which destabilizes the RANSAC estimation pro-

cess, effectively resulting in the removal of map features as

outliers (see right image pair in Fig. 2). In these cases, the

map motion estimation process fails.

2D sequences like Basel2D or 3D sequences with minor

static content like Insbruck3D are less prone to this effect.

However, this dramatically changes when ORB is used in-

stead of SIFT. This effect is illustrated in Fig. 3. The failing

RMEs are due to the strong affinity of ORB to text, which in

combination with the hard limit on detector numbers results

in an insufficient number of map features. Note that increas-

ing the ORB detector number (we currently use 1500 for our

setup) will not help this issue: besides the exponentially in-

creasing matching overhead, map features will still remain a

noise-afflicted minority within reasonable detector numbers

(≤ 3000) and thus are likely to be rejected by RANSAC.

3. PROPOSED MASKING SCHEME

The targeted algorithm should be real-time capable and must

be able to adapt to the given sequence, since extend and posi-

tion of map and static areas may change over time. Also, map
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Fig. 4. Top row: intermediate mask results for the four tested BGS algorithms Diff-BGS, MM-BGS, MV-BGS and AGMM-

BGS (left to right). Bottom row: mask results after morphological hole filling. Blue color indicates estimated map area.

areas may be rendered differently according to the context,

which rules out any pattern-based recognition using prior

knowledge of the map design. We found that Background

Subtraction (BGS) techniques provide both efficient and fast

solutions to this problem. In the following, we evaluate four

different BGS algorithms: plain frame-by-frame difference

(Diff-BGS), moving-mean over the last three frames (MM-

BGS), moving variance over the last three frames (MV-BGS)

and Adaptive GMM (AGGM-BGS) as representative of a

more complex approach [17]. An implementation of those

can be found in the open source Bgslibrary [18]. Even though

rotation is the dominant motion in navigation sequences, it

accounts only for 10-20% of the total frame number and is

often interrupted by 1-2 still frames. As a result, MM-BGS,

MV-BGS and AGGM-BGS cannot be applied to navigation

sequences directly since their moving-window-based pro-

cessing would result in degenerated background masks. We
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Fig. 5. BGS evaluation results. a) Mask error with respect

to a hand annotated groundtruth mask. b) Number of failed

RMEs per sequence when applying different BGS schemes.

therefore use Diff-BGS as a preprocessing step and choose

the luminance sum-of-differences (SAD) threshold of succes-

sive frames at 106 in order to identify significant motion. A

frame is forwarded to MM-BGS, MV-BGS and AGGM-BGS

only when motion is found to be significant.

The acquired masks need further postprocessing in or-

der to be used for RME: we apply morphological hole filling

with a 13x13 sized rectangular kernel. Fig. 4 depicts exam-

ple masks for each of the four tested BGS algorithms. Note

that static areas may still contain moving elements like slid-

ing text or updated symbols. We found that Diff-BGS typi-

cally produces less accurate masks, but shows fast recovery

when static areas are updated, e.g. when text changes or info

boxes slide into or out of view. This is illustrated in Fig. 5a,

which shows the mask error for Basel3D in terms of SAD

for each of the four algorithms. For illustration purposes, the

error is shown only for those time instants where a mask up-

date occurred (i.e. when the frame shows significant motion).

We found that even though Diff-BGS produces less accurate

masks, it often leads to a more stable ORB-based RME pro-

cess. In order to demonstrate this, we measure the reprojec-

tion error ǫ of the estimated parameters using groundtruth mo-

tion data and identify a failed estimation by checking if ǫ > 5.

Fig. 5b gives numbers on this for different BGS algorithms.

Interestingly, the fitness of Diff-BGS for RME is caused by

the fast recovery from changes in static areas (see mask up-

date 30 in Fig. 5a), which leads to less text areas exposed to

ORB detection and matching during RME. Fig. 5b also shows

that a Diff-BGS-based scheme is able to cut the number of

failed RMEs by 58%, 92% and 73% for Basel3D, Basel2D

and Insbruck3D, respectively. Due to this, we choose Diff-

BGS for integration into our proposed RME scheme.

In order to compare processing speed of our scheme to

the speed of a common SIFT- or SURF-based RME, we im-

plemented all three schemes using the ORB, SIFT and SURF

C++ implementations of OpenCV [19]. Since our scheme is

based on Diff-BGS for mask creation, we can reuse its SAD
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Fig. 6. HEVC encoder integration. a) Proposed HEVC-based encoder with new components marked in red. b) Comparison of

compression efficiency of the proposed HEVC-based encoder against original HEVC encoding.

output to execute hole filling, ORB and RANSAC only in the

case of significant motion activity. Combined with the fast

execution of ORB, we achieve a single-thread performance

of 10.1 fps on a Core2 Quad processor, as compared to 0.3

fps (SIFT) or 1.1 fps (SURF).

4. HEVC ENCODING RESULTS

A successful RME is of utmost importance in order to com-

pensate for rotational motion in the scope of video coding.

As shown above, a Diff-BGS-based calculation of masks for

static areas can significantly reduce the total number of failed

RMEs when real-time ORB features are required. In the fol-

lowing, we demonstrate how the proposed Diff-BGS-based

stabilization of the RME process directly translates into re-

duced bitrate requirements for video encoding. We chose the

HEVC implementation HM-7.0 [4] for evaluation purposes,

but real-time H.264/AVC video encoding solutions like [20]

are also feasible. For integration purposes, we configured

HEVC with low delay main profile, PPPP GOP size and I-

frame starting. In HEVC, we use the reference frame buffer

management to provide rotationally compensated reference

frames whenever significant motion is detected. The archi-

tecture of the modified encoder is illustrated in Fig. 6a. After

RME has been carried out using morphologically corrected

masks from Diff-BGS, a rotationally compensated reference

frame is embedded as second reference frame in reference list

0. The parameters used for this warping step are transmitted

to the decoder as uncompressed 18 byte side information on a

per-frame basis. This side information overhead is included in

Fig. 6b, which gives a comparison between standard HEVC

encoding and our proposed encoder in terms of compression

efficiency. For Basel2D and Insbruck3D, mean Bjontegaard

[21] bitrate savings of 9.6% and 7.5% are achieved, corre-

sponding to a quality gain of 0.7dB and 0.6dB, respectively.

The bitrate savings are a direct result of the provided rotation-

ally compensated reference frame, which keeps the encoder

from approximating rotational motion by choosing smallest

block partitioning. Since we chose Basel3D as an example

for a sequence which is hard to estimate even for SIFT, RME

failrate is only cut by half and thus RME comes with moder-

ate savings of 3.2% for this sequence. In any case, creation

of static area masks is essential for the success of ORB-based

RME: skipping the masking process will result in RD-curves

falling back to a compression efficiency almost identical to

standard HEVC encoding (compare fail rates in Fig. 5b).

5. CONCLUSIONS

In this paper, we presented a scheme to perform fast, reliable

and precise Rotational Motion Estimation (RME) on naviga-

tion sequences. Since real-time feature transforms like ORB

[3] or FAST/BRIEF [11][12] are not directly applicable to

navigation sequences due to static areas, we combine the fea-

ture transform with restricting masks, which we update only

in the face of significant frame activity. For mask creation,

we evaluated different Background Subtraction (BGS) tech-

niques and found Diff-BGS [18] to provide sufficiently accu-

rate estimations of static areas. Our evaluation shows that the

number of failing RMEs can be reduced by up to 92%. The

proposed scheme makes ORB applicable to the area of nav-

igation sequence encoding. This eliminates the need to use

SIFT [2] or SURF [9] for precise motion estimations while at

the same time provides real-time performance with an aver-

age of 10.1 frames per second. An integration of the proposed

scheme into the HEVC video compression standard demon-

strates bitrate savings of up to 9.6%.
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