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ABSTRACT
Methods based on partial differential equations (PDE) become in-
creasingly one of the methods of image processing. Recently a dif-
fusion method is appeared, it allows to generalize the diffusion to
the complex domain by the injection of a complex number in the
heat equation. For small phase angles, the linear process generates
the Gaussian and Laplacian pyramids (scale-spaces) simultaneously,
depicted in the real and imaginary parts, respectively. The imaginary
value serves as a robust edge-detector with increasing confidence in
time, thus handles noise well and may serve as a controller for non-
linear processes. In this article we propose to extend this concept by
introducing a notion of directionality in such a way as each equation
of the system will correspond to a specific direction. It is in our in-
terests to use higher order algebra to adapt the process to the four
discrete directions. Then we will focus on the imaginary parts for
developing a nonlinear scheme.

Index Terms— PDEs, complex diffusion, directional PDEs,
higher order algebra.

1. INTRODUCTION

PDE Take advantages of many mathematical tools and algorithms for
signal discretizations. They have a success with good experimental
results. PDE-based methods appear in a large variety of image pro-
cessing and computer vision areas ranging from shape-from-shading
and histogram modification to optic flow and stereovision. The sim-
plest PDE method for smoothing images is to apply a linear diffusion
process.

∂tU = ∆U (1)

This equation appears in many physical transport processes. In the
context of heat transfer it is called heat equation. In image process-
ing we may identify the concentration with the grey value at a cer-
tain location. One of the problems associated with the approach of
linear diffusion is that important structural features such as edges
are smoothed and blurred. To overcome this problem, Perona and
Malik [7] proposed a nonlinear adaptive diffusion process, termed
anisotropic diffusion, to reduce the smoothing effect near edges. So,
they postulated that the transitions belong to regions of important
gradient than those corresponding to the noise. From there, they
sought to limit diffusion when the gradient is high:

∂U(x, t)

∂t
= div (g (|∇U(x, t)|)∇U(x, t)) . (2)

However, Perona and Malik’s model have been improved in a work
by some of authors [3], [1]. In 2004, G. Gilboa proposed a new ap-
proach called complex diffusion that consist to generalize the linear

scale spaces in the complex domain [4] . An important observation,
supported theoretically and numerically, is that the imaginary part
can serve as an edge detector, when the complex diffusion coeffi-
cient approaches the real axis. Based on this observation, he de-
veloped two nonlinear schemes: a regularized shock filter for im-
age enhancement and a ramp preserving denoising process [6], [5].
Other extensions of Perona-Malik scheme suggest to study direc-
tional smoothing strategies. The first diffusion approach developed
in [8] concerns textured images which contain orientations ruptures.
In our study, we adapt the principle of complex diffusion for several
directions using directional PDEs and the concept of hypercomplex
numbers. Based on this idea linear and nonlinear diffusion schemes
are developped.

The paper is organized as follows: in section 2, we present linear
and nonlinear complex schemes. In section 3, we explain the prin-
ciple of our work and we analyze the case of a system of four PDEs
associated with quaternionic number. In section 4, study consists in
taking into account both diagonals of the image. This leads to in-
crease the system order. In this part linear and nonlinear approach
will also be studied.

2. COMPLEX DIFFUSION

2.1. Isotropic complex diffusion

The complex diffusion equation can be written as follows [4]:{
Ut = c · Uxx, t > 0, x ∈ R, c ∈ C, U ∈ C,
U (x, 0) = U0 ∈ R. (3)

In the general case, the initial condition U0 is complex. We take the
particular case U0 ∈ R , with U0 the original image.

We write the complex coefficient as follows : c = re(jθ). When
θ → 0 and t ≥ 0, the real part of the fundamental solution is assim-
ilated to a Gaussian and the imaginary part tends to the Laplacian of
the Gaussian multiplied by t and the magnitude of c [4]:{

limθ→0 Re(U) = gσ ∗ U0,

limθ→0
Im(U)
θ

= tr∆gσ ∗ U0,
(4)

with Re denotes the real part and Im the imaginary part.

2.2. Non-linear complex diffusion

Non-linear complex diffusion (Ramp preserving denoising) can rely
on the properties of linear complex diffusion. The second deriva-
tive (the laplacian) can serve as edges detector, but he suffers from
two problems: noise has high second derivative and numerical prob-
lem arises when we calculate approximation of the third derivative
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[4]. These two problems are solved using the non linear complex
diffusion; the imaginary part (divided by θ) is used to control the
diffusion process [4]:

Ut = div (C (Im(U))∇U) , (5)

C (Im(U)) =
ejθ

1 +
(

Im(U)
kθ

)2 . (6)

For the same reasons discussed in the linear case, the phase θmust be
small. Ramp preserving denoising can serve for denoising in illumi-
nation changing conditions and avoids effects caused by the gradient
especially in the Perona-Malik’s model [4]. The complex diffusion
employs analysis of different spatial directions. However, The non-
linear directional processes provides an efficient tool and separate
the orientation estimation step from the diffusion process. In this pa-
per we propose to develop a filtering based on hypercomplex concept
and consider other directions.

3. QUATERNIONIC DIFFUSION

In the previous section, we have seen the improvement achieved by
the injection of a complex number in the diffusion equation. The
complex diffusion preserves the edges of the image, it may be very
consistent for edges with linear variation. We are interested to adapt
the principle of diffusion complex for several directions. The num-
ber of equations which constitute the system will match to the num-
ber of directions. The different parts can be encoded with a higher
order algebra . Then the result corresponding to the use of the clas-
sical directions can be represented by a quaternionic number. The
algebra H , composed of elements in the form q = (q0, q1, q2, q3) =
(S(q), V (q)). The real part S(q) and the vector V (q) are commonly
called the scalar part and the vector part of the quaternion q.

q = q0 + iq1 + jq2 + kq3. (7)

Calculation rules become i2 = j2 = k2 = −1, ij = −ji =
k, jk = −kj = i, ki = −ik = j. with q0, q1, q2, q3 ∈ R.

Our approach consist to extend the complex diffusion by associ-
ating each direction with orientation analysis of contours. We con-
sider the extension in the linear case. Taking into account that the
orientation is defined to be orthogonal to the process direction, we
propose the scheme which highlights the classical directions as fol-
low: 

∂tq0 =
∂2q0
∂x2

+
∂2q0
∂y2
− θ ∂

2q1
∂x2
− θ ∂

2q2
∂y2

,

∂tq1 =
∂2q1
∂x2

+ θ
∂2q0
∂y2

,

∂tq2 =
∂2q2
∂y2

+ θ
∂2q0
∂x2

,

IC : q0 = U0, q1 = q2 = 0.

(8)

So we obtain a system of differential equations and the image can be
represented by quaternion:

U = q0 + iq1 + jq2. (9)

with U0 the original image.
Fig.1 shows the behavior of the quaternionic isotropic diffusion

in the case of noisy image (SNR = 20dB). We observe that the results
depicted smoothing and edges detection which provides a consistent
linear process Fig.1(c), Fig.1(d).

Then we propose to extend this method by adapting process to
both directions which form the diagonal.

(a) Noisy image
(SNR=20dB).

(b) Real part.

(c) First imaginary part. (d) Second imaginary
part.

Fig. 1. Results of quaternionic isotropic diffusion

4. EXTENSION OF THE STUDY TO HYPERCOMPLEX

We generalize this principle to be suitable to both directions which
form the diagonal. Therefore we will get four parts dealing simul-
taneously processing allong the four directions. In this case, these
parts can be combined to give rise to anisotropic smoothing.

4.1. Isotropic model

Our objective is to adapt the process to the diagonal. Taking into
account the digital format of image, it is easy to implement smooth-
ing which is made along the both vectors which form the diagonal.
To realize a smoothing along these directions we must introduce the
notion of directional derivative.

The notion of directional derivative quantifies the local change
of a function depending on several variables and at a specific point
along a specific direction in space of these variables.The derivative
of f at the point u along the vector v is, if it exists, the derivative at
(0) of the function of the real variable t→ f(u+ tv):

Dhf(u) =
t→0|t 6=0→ f(u+ tv)− f(u)

t
. (10)

In our case, study consists in highlighting the vectors: (1, 0), (0, 1)
which constitute the basic element and v1(1, 1), v2(−1, 1) are unit
vectors which depict the diagonal. To remain in the context of the
study we argue from analogy and we obtain the model represented
by the extended PDE system:

∂tq0 = ∂2
xq0 + ∂2

yq0 +D2
v1q0 +D2

v2q0
−θ∂2

xq1 − θ∂2
yq2 − θD2

v2q3 − θD2
v1q4,

∂tq1 = ∂2
xq1 + θ∂2

yq0,
∂tq2 = ∂2

yq2 + θ∂2
xq0,

∂tq3 = D2
v1q3 + θD2

v2q0,
∂tq4 = D2

v2q4 + θD2
v1q0.

(11)

We obtain four imaginary parts which correspond to the images that
contain the details following classical discrete directions on the one
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hand, and a real part which is characterized by a linear smoothing
which incorporates a diagonal diffusion on the other. The image can
be depicted by an Hypercomplex number:

U = q0 + e1q1 + e2q2 + e3q3 + e4q4. (12)

For introduction to hypercomplex algebra see for example [2]. Now
watching the effect in the case of the isotropic filtering on a synthetic
image circle with the different images on the Fig.2. On the Fig.2(b),
the real part provides an homogeneous regularization along the edges
and does not produces widening. However, in other parts (Fig.2(c)-
2(f)), we get images that contain the details along the orthogonal
direction of the orientation of the filtering. For example on Fig.2(c)
the study is done in the horizontal direction, on the other side the fil-
ter applied disappears details horizontal and keep the vertical details.
Generally more we increase the number of iterations and the edges
are well presented. After studying the isotropic case, we propose to
extend this principle in the nonlinear case, this can be done by using
secondary parts.

(a) Noisy im-
age(SNR=15dB)

(b) Real part. (c) First imaginary
part.

(d) Second imaginary
part.

(e) Third imaginary
part.

(f) Fourth imaginary
part.

Fig. 2. Results of the isotropic directional hypercomplex diffusion

4.2. Anisotropic case

The approach seen in the case of ramp preserving denoising provides
a better approximation of the solution and avoids errors due to dis-
cretization. We rely on this basic principle to make filters seen previ-
ously non-linear. These filters allow the extraction of edges along the
horizontal vertical and diagonal directions. We assume that through
this study, all edges are presented separately. Firstly we propose the
basic scheme represented by the following equations:



∂tq0 = ∂x(C2∂xq0) + ∂y(C1∂yq0) +Dv1(C4Dv1q0)
+Dv2(C3Dv2q0)− θ∂x(C1∂xq1)− θ∂y(C2∂yq2)
−θDv1(C3Dv1q3)− θDv2(C4Dv2q4),
∂tq1 = ∂x(C1 ∂xq1) + θ∂y(C1 ∂yq0),
∂tq2 = ∂y(C2 ∂yq2) + θ∂x(C2 ∂xq0),
∂tq3 = Dv1(C3 Dv1q3) + θDv2(C3 Dv2q0),
∂tq4 = Dv2(C4 Dv2q4) + θDv1(C4 Dv1q0),

(13)

with Ci function of nonlinearity depending obviously on imaginary
parts Ci = f(|q1|, |q2|, |q3|, |q4|). Regarding the anisotropic defi-

nition two methods seem obvious. The first uses a combination of
different imaginary parts, while the second is purely directional.

4.2.1. First anisotropic model

In eq.(13) we put C = C1 = C2 = C3 = C4. We need to find
a combination that fits within pattern of nonlinear diffusion and can
control the anisotropic diffusion in such a way as it can slow down
the process near the edges. So the combination should be able to
present the contour in any direction. We propose to choose the max-
imum of imaginary parts C = C(max(|q1|, |q2|, |q3|, |q4|)). This
choice can be justified by the fact that it can always take the maxi-
mum value of the edges shown in each imaginary part.

C =
1

1 + (max(|q1|,|q2|,|q3|,|q4|)
kθ

)2
. (14)

4.2.2. Second anisotropic model

The main idea was to bring up the components that have a direc-
tional diffusion, therefore, we can simply implement a nonlinear dif-
fusion scheme. In order to do so, we use the model of Perona-Malik
for each of secondary part to reduce the processing near edges and
to maintain it also. Having said that, secondary parts are injected
into the first part, which contains the result of the diffusion, in order
to control the anisotropic process like the complex diffusion. This
scheme is obtained by introducing in eq.(11) the following function
of diffusion: Ci = 1

1+(
qi
kθ

)2
.

Now, we propose to compare the non-linear schemes.

4.2.3. Results and discussion

Fig.3 displays an experiment comparing the anisotropic process ap-
plied to denoising image with SNR = 20dB. The first approach
does not removes noise allong edges and produces blurring zones
(Fig.3(f), Fig.3(e)). This undesirable phenomenon is due to the fact
that the maximum does not match always to the best smoothing di-
rection. The process according to the diagonal direction can be ob-
served in the result of the second approach. That restore the edge as
well as the complex diffusion which produces more distortion but it
enhance most of contours (Fig.3(d),Fig.3(h)). A slight bluring neigh-
borhood edges can be observed on Fig.3(h).

On Fig.4 we give illustration of anisotropic diffusion schemes
seen previously used to remove noise that result from a low quality
JPEG compression. The filter of the diffusion of Perona and Malik
tend to create large flat zones and boundaries inside smooth regions
but it enhance most of the dges (Fig.4(c)). This effect does not
appear in other non linear process. The first approach removes the
noise along with edges (Fig.4(e)). Whereas the second approach
does not enhance edges as the Perona-Malik process but removes
most of noise and does not produce staircasing effect (Fig.4(f)).
Compared to the complex diffusion, the second approach is more
adapted to the debloking (Fig.4(d)).

5. CONCLUSION

We employ the hypercomplex number to set up 2D smoothing
scheme using directional strategy. We studies a different manners
by combining edges informations.The experiment results show that
the introduction of directionality preserves edges and considers di-
rectional analysis. The adaptive strategy to any direction is able
to improve the behavior of our process. However we necessite a
consistent discretization schemes.
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(a) Noisy image(SNR=20dB). (b) Zoom on the noisy image.

(c) Complex diffusion
(k=5,SNR=18.24dB).

(d) Zoom on the complex diffu-
sion.

(e) Hypercomplex (first approach)
(k=6,SNR=17.07dB).

(f) Zoom on the hypercomplex
(first approach).

(g) Hypercomplex (second ap-
proach) (k=1,SNR=19.12dB).

(h) Zoom on the hypercomplex
(second approach).

Fig. 3. Comparaison of the anisotropic diffusion process

Acknowledgement
This work is supported by the European Community (FEDER pro-
gram).

(a) Original image. (b) Noisy image (low quality
JPEG).

(c) Perona and Malik (k = 15). (d) Complex diffusion (k = 4).

(e) Hypercomplex (first approach)
(k = 6).

(f) Hypercomplex (second
approach) (k = 1).

Fig. 4. Experiment results of anisotropic diffusion process
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