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ABSTRACT

Multiplexed imaging is a powerful mechanism for achieving high
signal-to-noise ratio (SNR) in the presence of signal-independent
additive noise. However, for imaging in presence of only signal-
dependent shot noise, multiplexing has been shown to significantly
degrade SNR. Hence, multiplexing to increase SNR in presence of
Poisson noise is normally thought to be infeasible. In this paper, we
present an exception to this view by demonstrating multiplexing ad-
vantage when the scene parameters are non-negative valued and are
observed through a low-rate Poisson channel.

Index Terms— Multiplexed illumination and sensing, image de-
noising, shot noise, photon-limited imaging, Poisson noise, signal-
dependent noise, convex optimization.

1. INTRODUCTION

Multiplexed illumination or sensing is frequently used in imaging
applications to obtain significant improvement in signal-to-noise ra-
tio (SNR) in the presence of signal-independent additive noise. For
example, in [1] an approach based on Hadamard codes was intro-
duced to image objects under variable-direction lighting. The setup
for this problem is shown in Figure 1.

Fig. 1. Multiplexed imaging setup

Multiplexed imaging comprises two stages: In the first stage, a se-
quence of multiplexed images is acquired by illuminating the scene
simultaneously using different subsets of multiple sources. For each
image in the acquisition sequence, the pattern of on sources is based
on a code matrix. In the second stage, to recover the images that
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correspond to only one on source at a time, the acquired image se-
quence is demultiplexed, ordinarily using simple code matrix inver-
sion. Having more than one on source at a time increases object
irradiance, and assuming only signal-independent additive noise in
the observations, the demultiplexed images obtained by code matrix
inversion have enhanced SNR relative to images that are acquired
traditionally by turning on one light source at a time. Multiplexed
imaging also reduces the effect of additive background or sensor
dark current [1]. Note that multiplexing does not decrease the num-
ber of measurements required. Multiplexed imaging still requires as
many measurements as the number of illumination sources. Also,
the demultiplexed images are produced without the use of scene pri-
ors or spatial regularization.

It is a well known fact that, multiplexed imaging solely in the
presence of Poisson noise, where demultiplexing is done using
matrix inversion, substantially degrades the SNR [2] (see Sec-
tion 3.2). Related work on multiplexed imaging in the presence of
signal-dependent noise [3] assumes two noise components in the
observation channel: Poisson noise and additive white Gaussian
noise (AWGN). The approach in [3] focuses on using multiplexed
illumination to mitigate the effect of AWGN. In this case, demul-
tiplexing amplifies the effect of signal-dependent Poisson noise but
reduces the effect of signal-independent AWGN. The technique
in [3] obtains an overall increase in SNR when AWGN is the domi-
nant source of noise; but the method fails when Poisson noise is the
dominant noise source.

In this paper, we present the following results for multiplexed
imaging in the case when Poisson or shot noise is the only source of
noise:

1. We prove that for non-negative signals like image intensities,
demultiplexing using matrix inversion is not equal to the max-
imum likelihood intensity estimate (MLIE).

2. Using simulations, we show that when image intensity obser-
vations are made using low rate Poisson channels, MLIE us-
ing multiplexed measurements has significant SNR improve-
ment over the traditional acquisition technique of measuring
one channel at a time.

The enhanced SNR in Claim 2 does not contradict the well-known
negative result about SNR degradation due to multiplexing in pres-
ence of Poisson noise [2]; this is because the degradation of SNR
is in context of demultiplexing using code matrix inversion and not
with maximum likelihood estimation. As we will show in Section 4,
the two approaches—matrix inversion and ML—are equivalent
when either there are no non-negativity constraints on the intensity
signal, or the intensity measurements are made through a high-rate
Poisson channel. The authors are unaware of previously published
work that compares the two methods of demultiplexing.

The low-rate Poisson intensity estimation problem is applicable
in a number of practical scenarios such as astronomy, night vision,
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Fig. 2. Block diagram of setups measuring direct illumination (left) and
multiplexed illumination (right) over independent noisy channels.

medical imaging applications such as positron emission tomography,
and imaging of light sensitive biological and chemical samples. In
these applications, the measurements are often collected using sin-
gle photon-counting detectors. The observations obtained from such
detectors are inherently noisy due to low count levels, and corrupted
by signal-dependent Poisson noise [4].

Note that our interest here is in classical estimation rather than
Bayesian estimation. For cases where a non-trivial prior is available,
the maximum a posteriori probability estimator would presumably
have some of the same behavior as we find in this paper for the ML
estimator. We also do not differentiate between computational meth-
ods for finding the ML estimate; we use SPIRAL-TAP [5] without
the option of spatial regularization to solve the non-negatively con-
strained MLIE problem, though generalized approximate message
passing [6] also facilitates inclusion of Poisson likelihoods.

2. PROBLEM FORMULATION
Let x be a size-n vector that represents the scene intensities. Con-
sider the setup where each of the n light sources illuminates a scene
point and the reflected light is collected by a single bucket detector.

The traditional illumination method involves turning each light
source on, one at a time and acquiring n measurements in total. In
contrast, the multiplexed illumination method acquires a sequence
of n measurements obtained by turning on multiple light sources at
the same time using coded illumination patterns.

All the measurements are observed over independent noisy
channels. We consider two kinds of noise models: signal-independent
additive Gaussian and signal-dependent Poisson. The goal is to esti-
mate the original signal, x, based on the measurements.

As stated, in the traditional illumination method each of the n
sources are turned on one-by-one resulting in observations yi = xi+
ηi for i ∈ {1, 2, ..., n}. Let ηi be additive zero-mean Gaussian noise
with standard deviation σ. Let W denote the code matrix used for
multiplexed illumination and let wTi denote its rows (see Figure 2).

W is typically defined as a (0, 1)-matrix with every row de-
scribing a certain pattern of turning sensors on and off. Multi-
plexed illumination leads to the observation zi = wTi x+ηi for
i ∈ {1, 2, ..., n}. When the noise model is Poisson, we observe
yi = Poi(xi) under traditional illumination and zi = Poi

(
wTi x

)
under multiplexed illumination.

In acquisition using traditional illumination, the signal, x, is es-
timated based on maximizing the likelihood function p(y |x). The
maximum likelihood estimate of x is then x̂ = y. With multiplex-
ing, the estimate of illumination is based on p(z |Wx) and is equal
to the matrix inverse solution x̂ = W−1z when the signal x is not
subject to any constraint, such as non-negativity.

3. PRIOR WORK
3.1. Multiplexed imaging under signal-independent additive
Gaussian noise

Let x̂ be an estimate of the original signal x. The purpose of multi-
plexed sensing is to reduce the mean square error (MSE) in estima-

tion. We define MSE(x̂) = tr
[
E(x−x̂)(x−x̂)T

]
. The multiplex-

ing gain associated with using a multiplexing code W is defined as
the reduction ratio in the root MSE:

G(W ) =

√
MSE(x̂direct = y)

MSE(x̂ =W−1z)
. (1)

G > 1⇒ multiplexed imaging results in better signal estimation.
Previous work [1] assumes AWGN observation channels. Let η be
the additive Gaussian noise vector and W be a multiplexing matrix.
Then for measurements acquired in presence of AWGN we have,

G(W ) =

√
tr[E(ηηT )]

tr[E(W−1ηηTW−T )]
=

√
1

tr[(WTW )−1]
.

Designing multiplexing matrices based on Hadamard codes are op-
timal in the sense that, for fixed n, argmaxW (G(W )) = H under
AWGN [7]. A Hadamard multiplexing matrix H of size n×n is
constructed by deleting the first row and column of a Hadamard ma-
trix of size n+1 and replacing 1’s with 0’s and −1’s with 1’s [8]. It
can be shown that G(H) = (n+1)/(2

√
n). Since n > 1 implies

G(H) > 1, multiplexed imaging using Hadamard codes achieves
the best signal reconstruction over any other multiplexing code, in-
cluding traditional acquisition.

3.2. Multiplexed imaging under Poisson noise

We are interested in photon-limited imaging, where the noise cor-
ruption is dominated by Poisson noise. Measurements for traditional
imaging are denoted by yi ∼ Poi(xi) for i ∈ {1, 2, ..., n}. A strictly
positive x can be safely assumed in practice as background intensity
cannot be perfectly eliminated.

We now show that Hadamard multiplexing followed by matrix
inversion severely degrades the signal-to-noise ratio and increases
the MSE in signal estimation. This is because Poisson noise from
multiplexed measurements has higher variance than those obtained
from traditional measurements. The multiplexed measurements are
denoted as zi ∼ Poi(wTi x) where wi is the ith row of the multiplex-
ing matrix W . We rewrite Poisson observation channel as signal de-
pendent additive noise, i.e., zi ∼ wTi x+κ̃i, where κ̃i has mean zero
and variance wTi x, for i ∈ {1, 2, ..., n}. Then, using the Hadamard
multiplexing matrix H , the multiplexed gain (for ordinary demulti-
plexing by code matrix inversion) becomes

G(H) =

√
tr[E(κκT )]

tr[E(H−1κ̃κ̃TH−T )]
=

√
n+1

2n
.

Because n > 1 implies G < 1, the estimated signal x̂ from
Hadamard multiplexed data under Poisson noise will always have
MSE higher than that obtained from direct measurements. Further-
more, using the proof technique similar to the one used in [9], we
conclude that for any type of multiplexing with a non-trivial (0, 1)-
matrix, we have G < 1 and all forms of multiplexing fail to provide
MSE reduction in the case of Poisson noise.

The claims presented in this section only hold, however, when
demultiplexing is accomplished using the code matrix inverse. We
now generalize the method of demultiplexing using maximum like-
lihood estimation in the case of non-negatively valued signals.
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Fig. 3. Probability mass functions of first index variable p(x̂1) =
S
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2
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2

)
for varying values of x = α13×1.

4. LOW-RATE POISSON INTENSITY ESTIMATION

When signal x is unconstrained, the problem of maximum likeli-
hood (ML) estimation of x from multiplexed measurements z under
Poisson observation channels is as follows:

x̂ = argmax
x

(
n∏
i=1

(Wx)zii
(zi)!

e−(Wx)i

)
.

We now show that, in the unconstrained case, the matrix inversion
solution x̂ = W−1z is equal the solution of the above optimization
problem. To see this, we set f(x |W ) to be the Poisson likelihood
objective function in the above optimization problem. Then, x̂ is
obtained by minimizing the negative log of the objective function,

− log f(x |W ) = 1
T (Wx)−

n∑
i=1

zi log(e
T
i (Wx)),

where 1 is a vector of ones and ei is a vector with ith entry equal to
1 and other entries equal to 0. Note that

∇x (− log f(x |W )) =WT
1−

n∑
i=1

(WT ei)zi
(eTi (Wx))

is equal to zero if x = W−1z. Also, x = W−1z is the only op-
timal solution of f(W | z) because of the strong convexity of the
likelihood function. This result combined with the theory of multi-
plexing under Poisson noise presented in section 3 implies that the
solution to the unconstrained optimization problem results in higher
MSE under Poisson noise compared with traditional imaging.

However, when the signal x is subject to the non-negativity con-
straint, the matrix inverse solution may not be equal to the solution
of the constrained maximum likelihood intensity estimation problem
defined as

x̂ = argmax
x≥0

(
n∏
i=1

(Wx)zii
(zi)!

e−(Wx)i

)
. (2)

We now investigate if multiplexing along with solving the con-
strained ML intensity estimation problem leads to MSE decrease
even in the presence of signal dependent Poisson noise.

When is the non-negativity constraint activated? We illustrate
the answer with the simplest non-trivial example. Set n = 3 and the
signal intensity x as a constant vector. Also, set the multiplexer W
as the following matrix with full rank:

W =

1 0 1
0 1 1
1 1 0

 .
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Fig. 4. Probability of any entry of the matrix inverse solution be-
coming negative with varying rate for several values of n.

Since z ∼ Poi (x), the intensity estimate x̂ = W−1z is a random
vector. We thus have the following expression for the probability
density function (pdf) for the first entry of the estimate x̂:

p (x̂1) = p
(
(W−1z)1

)
= p

(z1+z3
2
− z2

2

)
= S

(
k;
x1+x3

2
,
x2
2

)
,

where S(k;α, β) = e−(α+β)(α/β)k/2I|k|(2
√
αβ) is the Skellam

distribution with I|k| being the modified Bessel function of the first
kind [10].

Figure 3 plots S(k; (x1+x3)/2, x2/2) vs. k for several constant
intensity signals. We see that the area under the plotted curves where
k < 0 decreases as the Poisson noise goes from x = 0.5(13×1) to
x = 4(13×1). In other words, as the Poisson rate decreases, the
probability of the first entry of the matrix solution being negative
P (x̂1 < 0) increases. For n = 3, because the sum of probabili-
ties of two or more entries going negative is zero, the probability of
having a negative entry in the matrix inverse solution is equal to the
probability of having an active non-negativity constraint.

In the general case where n is an arbitrary positive integer, what
we are then interested in is the probability of at least one of the en-
tries of x̂ = W−1z going negative. The probability of activating at
least one non-negativity constraint has the following general expres-
sion depending on the signal intensity x and the multiplexer W :

P ((x̂1 < 0)∪ . . .∪ (x̂n < 0))

= 1−P ((x̂1 ≥ 0)∩ . . .∩ (x̂n ≥ 0))

= 1−
∫
kn≥0

. . .

∫
k1≥0

P (x̂1 = k1, . . . , x̂n = kn) dk1 . . . dkn

= 1−
∑

W−1c≥0

P (z1 = c1, . . . , zn = cn)

= 1−
∑

W−1c≥0

n∏
i=1

(Wx)cii
ci!

e−(Wx)i . (3)

Figure 4 plots equation (3) for various values of n, and verifies
two key claims:

1. if we have high-rate signal (xi > 1), then the ML solution is
more likely to be x̂ =W−1z and,

2. in the low-rate regime (xi < 1), the ML solution is most
likely not equal to the matrix inverse x̂ =W−1z.

These results suggest that in the case of low-rate Poisson intensity
reconstruction, multiplexing measurements may not always worsen
the quality of intensity estimation.
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5. NUMERICAL EXPERIMENTS

We examine the MSE reduction when the low-intensity signals un-
der independent Poisson channels are multiplexed. Figure 5 is a peak
signal-to-noise ratio (PSNR) comparison plot between reconstructed
solutions obtained from non-multiplexed and multiplexed measure-
ments for several constant rates. A Hadamard multiplexing matrix
was used to mix a constant positive vector (xi = c, ∀i) of size
n = 63. The sparse Poisson intensity reconstruction algorithm (SPI-
RAL) given in [5] was used to reconstruct the maximum likelihood
solutions without any regularization. Also, 20 trials of reconstruc-
tions are averaged for each simulation. There is a clear improvement
when the maximum likelihood solution is obtained after multiplex-
ing under rates below 0.8. At rates above 0.8, the violation proba-
bility decreases and the solution obtained from multiplexed measure-
ments has lower PSNR values than that obtained from measurements
without multiplexing.

Figures 6 and 7 show the maximum likelihood intensity esti-
mates (MLIE) from non-multiplexed and multiplexed measurements
for both high- and low-rate Poisson channels. These simulations use
a multiplexing matrix designed from cyclic codes, which is equal to
the adjacency matrix of an undirected 511-cycle graph. Also, know-
ing that the rate function x is piecewise linear, we generate maxi-
mum likelihood intensity estimates with trend filtering (MLIE+TF)
to improve the estimation fitting [11].

Plots in Figure 6 show that multiplexing decreases PSNR by
15.3 dB and confirm the traditional theory that for high-rate inten-
sity reconstruction, the ML solution is the matrix inverse solution
and multiplexing is harmful. Also, the trend filtered estimate from
non-multiplexed illuminations is higher in PSNR by 11.3 dB than
that from multiplexed illuminations.

On the other hand, Figure 7 plots the same reconstruction results
for a low-rate signal and shows that multiplexing improves the re-
construction quality by 1.9 dB. After trend filtering, the estimate so-
lution from multiplexing almost perfectly reconstructs the piecewise
constantness of the original intensity function, and gives a PSNR
boost of 2 dB over traditional pointwise acquisition.

6. CONCLUSIONS

In this paper, we demonstrate an exception to the view against using
multiplexing in the presence of signal dependent Poisson noise. We
showed under low-rate Poisson noise, there are clear improvements
of SNR boosts when demultiplexing is performed by solving the
non-negatively constrained maximum likelihood problem, instead
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constant signal x under high-rate Poisson noise from no multiplexing
(top) and multiplexing (bottom).
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of computing the reconstruction using the matrix inverse solution.
We also showed that these improvements are seen when the non-
negativity constraint is active, and using simulations, we observed
that there is MSE reduction when the probability of constraint viola-
tion is high.

Our results entail theoretical analysis particularly to analyze the
performance of different multiplexers under signal dependent Pois-
son noise. In a more practical setting, our results suggest the use
of multiplexing in low light level applications to improve imaging
quality.

It is of future interest to analyze the performance of multiplexed
imaging when the intensity signal is first degraded through a blurring
kernel or a forward imaging operator before being observed through
a low-rate Poisson channel.
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