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ABSTRACT

TV-like constraints/regularizations are useful tools in vari-
ational methods for multicomponent image restoration. In
this paper, we design more sophisticated non-local TV con-
straints which are derived from the structure tensor. The pro-
posed approach allows us to measure the non-local variations,
jointly for the different components, through various `1,p ma-
trix norms with p ≥ 1. The related convex constrained op-
timization problems are solved through a novel epigraphical
projection method. This formulation can be efficiently imple-
mented thanks to the flexibility offered by recent primal-dual
proximal algorithms. Experiments carried out for color images
demonstrate the interest of considering a Non-Local Structure
Tensor TV and show that the proposed epigraphical projec-
tion method leads to significant improvements in terms of
convergence speed over existing numerical solutions.

Index Terms— Convex optimization, color image restora-
tion, non-local total variation, structure tensor, singular value
decomposition.

1. INTRODUCTION

This work deals with the restoration of multicomponent im-
ages, such as color images, by adopting a constrained convex
optimization approach. Such a formulation may be preferred to
a regularized one since it has been recognized for a long time
that incorporating constraints directly on the solution often
facilitates the choice of the involved parameters [1, 2, 3, 4, 5].
Indeed, the constraint bounds are usually related to some phys-
ical properties of the target solution or to some knowledge of
the degradation process, e.g. the noise statistical properties.
One of the difficulties of constrained approaches is however
that a closed form of the projection onto the considered con-
straint set is not always available. Closed forms are known for
convex sets such as `2-balls, hypercubes defining dynamics
range constraints, or half-spaces. However, more sophisti-
cated constraints are usually necessary in order to efficiently
restore multicomponent images. Taking advantage of the flexi-
bility offered by recent proximal algorithms, we propose an

epigraphical method allowing us to address a wide class of
convex constraints.

The quality of the results obtained through a variational ap-
proach strongly depends on the ability to model the regularity
present in images. Since natural images are often piecewise
smooth, popular regularization models tend to penalize the
image gradient. In this context, Total Variation (TV) [6] has
emerged as a simple, yet successful, convex optimization tool.
However, TV fails to preserve textures, details and fine struc-
tures, because they are hardly distinguishable from noise. To
improve this behaviour, the TV model has been extended by
using a non-locality principle [7]. Another approach to over-
come these limitations is to replace the gradient operator with
a frame representation which yields a more suitable sparse rep-
resentation of the image [8]. The connections between these
two different approaches have been studied in [9]. It is still
unclear which approach leads to the best results. However,
there is some evidences that Non-Local (NL) TV may perform
better in some image restoration tasks [10, 11]. We thus focus
our attention on NLTV-based constraints, although our pro-
posed algorithm is quite general and it can also be adapted to
frame-based approaches.

Related work and motivations The extension of TV-based
models to multicomponent images is, in general, non trivial. A
first approach consists of computing TV channel-by-channel
and then summing up the resulting smoothness measures [12,
13, 14, 15, 16]. Since there is no coupling of the components,
this approach may potentially lead to component smearing
and loss of edges across components. An alternative way is to
process the components jointly, so as to better reveal details
and features that are not visible in each of the components
considered separately. This approach naturally arises when
the gradient of a multicomponent image is thought of as a
structure tensor [17, 18, 19, 20, 21, 22]. A concise review of
both frameworks can be found in [22].

The algorithmic solutions proposed in the aforementioned
works are mostly based on PDEs [18, 19, 12, 20, 21], pro-
jected gradient methods [14, 15, 16] or proximal algorithms
such as FISTA or Chambolle-Pock primal-dual technique [22].
However, to the best of our knowledge, there does not exist an

1359978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



algorithm for dealing with structure tensor TV as a constraint.
This is the main motivation of the present work.
Goal and contributions We propose a Structure Tensor
(ST) NLTV in order to deal with multicomponent image recov-
ery problems. This extends the ST-TV regularization proposed
in the color restoration literature. Second, we provide an effi-
cient solution based on proximal tools in order to solve convex
problems involving matricial `1,p-ball constraints. The pro-
posed solution avoids the inner iterations that are implemented
in the approaches in [23, 24] for solving regression problems.
Outline The paper is organized as follows. Section 2 de-
scribes the degradation model and formulates the multicom-
ponent constrained convex optimization problem based on a
NL structure tensor. Section 3 explains how to minimize the
corresponding objective function via proximal tools. Section 4
provides an experimental validation in the context of color
image restoration. The conclusions are given in Section 5.
Notation Γ0(RN ) denotes the set of proper, lower semicon-
tinuous, convex functions from RN to ]−∞,+∞]. The epi-
graph of ϕ ∈ Γ0(RN ) is the nonempty closed convex subset of
RN × R defined as epiϕ =

{
(y, ζ) ∈ RN × R

∣∣ ϕ(y) ≤ ζ
}

.
The projection onto a nonempty closed convex subsetC ⊂ RN
is, for every y ∈ RN , PC(y) = argminu∈C ‖u− y‖.

2. PROPOSED APPROACH

Degradation model The R-component signal of interest
is denoted by x = (x1, . . . , xR) ∈ (RN )R. The degradation
model is

z = B(Ax) (1)

where z = (z1, . . . , zS) ∈ (RK)S denotes the degraded ob-
servations, A = (Aj,i)1≤j≤S,1≤i≤R is the degradation linear
operator with Aj,i ∈ RK×N and B models the effect of a
(non-necessarily additive) noise.
Criterion In order to recover x from the observations z,
we use a variational approach that aims at solving the convex
problem

minimize
x

f(Ax, z) s.t.

{
x ∈ C,
g(x) ≤ η,

(2)

where η > 0 and C denotes a closed convex subset of (RN )R.
The cost function f(·, z) ∈ Γ0((RK)S) is related to the noise
characteristics. For instance, f is a quadratic function for
additive Gaussian noise, an `1-norm when a Laplacian noise is
involved, or a Kullback-Leibler divergence when dealing with
Poisson noise. Function g ∈ Γ0((RN )R) is used to incorporate
prior information. Some possible choices for this function
have been mentioned in the introduction. In what follows,
we introduce the proposed NL structure tensor constrained
optimization problem.
Non-Local Structure Tensor We extend the tensor regular-
ization in [22] to a Structure Tensor Non-Local TV constrained

optimization. To do so, for every ` ∈ {1, . . . , N}, let us define
the matrix

X(`) =
(
ω`,n(x

(`)
i − x

(n)
i )
)
n∈N`,1≤i≤R

∈ RM`×R (3)

where N` is a possibly non-local neighborhood of ` and M`

denotes its size. Methods for building such a neigborhood
and setting the associated weights (ω`,n)n∈N`

∈ ]0,+∞[
M`

are described in [25, 26, 27, 28]. The resulting ST-NLTV
constraint is

g(x) =

N∑
`=1

‖X(`)‖p, (4)

where ‖·‖p denotes the Schatten p-norm, with p ≥ 1. Denoting
by σX(`) =

(
σ
(m)

X(`)

)
1≤m≤min{M`,R}

the singular values of

X(`) ordered in decreasing order, the case p ∈ [1,+∞[ yields

g(x) =

N∑
`=1

min{M`,R}∑
m=1

(
σ
(m)

X(`)

)p1/p

, (5)

and p = +∞ leads to

g(x) =

N∑
`=1

σ
(1)

X(`) . (6)

When p = 1, the Schatten norm reduces to the nuclear norm.
Note that the Structure Tensor TV (ST-TV) proposed in

[22] is a special case of (4) that arises when, for every ` ∈
{1, . . . , N}, M` = 2, N` includes horizontal/vertical nearest
neighbors, and, for every n ∈ N`, ω`,n = 1.

3. ALGORITHMIC SOLUTION

Within the proposed constrained optimization framework,
Problem (2) can be reformulated as follows:

minimize
x

f(Ax, z) s. t.

{
x ∈ C,
F x ∈ D,

(7)

where the setC ⊂ (RN )R can be used for example to constrain
the dynamics range of the signal to be recovered. F is the
linear operator defined as

F : x 7→ [F1x . . . FNx] (8)

where, for every ` ∈ {1, . . . , N}, F` is the linear operator that
maps x ∈ (RN )R to the matrix X(`) ∈ RM`×R defined in (3).
Hereabove, D is the closed convex set defined as

D =
{
X = [X(1)> . . . X(N)>]> ∈ RM×R

∣∣ N∑
`=1

‖X(`)‖p ≤ η
}
,

(9)
with M = M1 + · · ·+MN .
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In recent works, iterative procedures have been proposed to
deal with an `1,2-ball constraint [23] or an `1,∞-ball constraint
[24]. Similar techniques can be used to compute the projection
onto D, but a more efficient method consists of using the
epigraphical splitting method proposed in [28]. More precisely,
we introduce an auxiliary vector ζ = (ζ(`))1≤`≤N ∈ RN in
Problem (7) and decompose the constraint D in two convex
sets: a union of epigraphs

E =
{

(X, ζ) ∈ RM×R × RN
∣∣

(∀` ∈ {1, . . . , N}) (X(`), ζ(`)) ∈ epi ‖ · ‖p
}
, (10)

and a closed half-space

W =
{
ζ ∈ RN

∣∣ 1>N ζ ≤ η}, (11)

with 1N = (1, . . . , 1)> ∈ RN . By using the proposed epi-
graphical splitting method, Problem (7) can be recast as

minimize
(x,ζ)

f(Ax, z) s. t.


x ∈ C,
(F x, ζ) ∈ E,
ζ ∈W.

(12)

The projection onto W is trivial, while the projection onto E
is given by the following new result:

Proposition 3.1 Let ` ∈ {1, . . . , N} and let X(`) ∈ RM`×R.
Let U (`)S(`)

(
V (`)

)>
be the Singular Value Decomposition of

X(`) where (U (`))>U (`) = I ,
(
V (`)

)>
V (`) = I and S(`) =

Diag(s(`)) with s(`) = (σ
(m)

X(`))1≤m≤min{M`,R}. Then,(
U (`)T (`)

(
V (`)

)>
, θ(`)

)
= Pepi ‖·‖p(X(`), ζ(`)), (13)

where T (`) = Diag(t(`)) and

(t(`), θ(`)) = Pepi ‖·‖p(s(`), ζ(`)). (14)

The above result shows that the projection onto the epigraph of
the `1,p matrix norm can be deduced from the projection onto
the `1,p vector norm. It turns out that closed form expressions
of the latter projection exist when p ∈ {1, 2,+∞} [28]. For
example, for every (s(`), ζ(`)) ∈ Rmin{M`,R} × R,

Pepi ‖·‖2(s(`), ζ(`)) =


(0, 0), if ‖s(`)‖2 < −ζ(`),
(s(`), ζ(`)), if ‖s(`)‖2 < ζ(`),

β(`)
(
s(`), ‖s(`)‖2

)
, otherwise,

(15)

where β(`) =
1

2

(
1 +

ζ(`)

‖s(`)‖2

)
. Moreover,

Pepi ‖·‖∞(s(`), ζ(`)) = (t(`), θ(`)), (16)

where, for every t(`) = (t(`,m))1≤m≤min{M`,R} ∈ Rmin{M`,R},

t(`,m) = min
{
σ
(m)

X(`) , θ
(`)
}
, (17)

θ(`) =
max

(
ζ(`) +

∑min{M`,R}
k=k

ν(`,k), 0
)

min{M`, R} − k + 2
. (18)

Hereabove, (ν(`,k))1≤k≤min{M`,R} is a sequence of reals ob-
tained by sorting (σ

(m)

X(`))1≤m≤min{M`,R} in ascending order
(by setting ν(`,0) = −∞ and ν(`,min{M`,R}+1) = +∞), and
k is the unique integer in {1, . . . ,min{M`, R}+ 1} such that

ν(`,k−1) <
ζ(`) +

∑min{M`,R}
k=k

ν(`,k)

min{M`, R} − k + 2
≤ ν(`,k). (19)

Note that the computation of the SVD can be avoided when
p = 2.

4. NUMERICAL RESULTS

In our experiments, the matrix A is a decimated convolution
which applies to each component an uniform blur followed by
a random decimation. We have thus R = S. The operator B
corresponds to an additive zero-mean white Gaussian noise
with standard deviation α. The fidelity term related to the
noise neg-log-likelihood is f = ‖A · −z‖22.

The experiments are focused on color imaging, i.e. the case
R = 3. While it is common for color imaging to work in a
luminance-chrominance space (such as YCbCr) or a perceptu-
ally uniform space (such as CIE Lab), the random decimation
prevents us from following this approach. Indeed, the prob-
lem is that pixels having missing colors cannot be correctly
projected onto a different color space. Therefore, the experi-
ments are conducted in the RGB color space. The dynamics
range constraint set C imposes that the pixel values belong to
[0, 255].

In order to solve Problem (12), we employ the primal-dual
M+LFBF algorithm recently proposed in [29], which is able to
address a wide class of convex optimization problems without
requiring any matrix inversion. It offers a good performance
and robustness to numerical errors. Its convergence is guaran-
teed (under weak conditions) and its structure makes it suitable
for implementation on highly parallel architectures.

In Fig. 1, we collect the results obtained on the color
image airplane (N = 512× 512) by using the proposed ST-
NLTV (cf. Section 2) and ST-TV [22]. The latter method
can be viewed as a particular case of the former one. CC-
TV and CC-NLTV refer to a channel separable constraint on∑R

i=1

∑N
`=1 ‖X

(`)
i ‖p, where X(`)

i denotes the i-th column
vector ofX(`) and ‖ ·‖p is the `p vector norm. In this example,
the bound η for each constraint was tuned in order to achieve
the best SNR value.

The results demonstrate the interest of considering non-
local structure tensor measures. Figs. 1b and 1c show the
results obtained with CC-TV-`2 and CC-NLTV-`2. Although
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(a) Airplane (zoom) (b) CC-TV-`2: 22.33 - 0.812 (c) CC-NLTV-`2: 23.20 - 0.829 (d) ST-TV-`2: 23.10 - 0.823 (e) ST-NLTV-`2: 23.69 - 0.836

(f) Noisy (zoom) (g) CC-TV-`∞: 22.00 - 0.803 (h) CC-NLTV-`∞: 23.28-0.827 (i) ST-TV-`∞: 22.68 - 0.817 (j) ST-NLTV-`∞: 23.03 - 0.823

Fig. 1. Restored images, along with the corresponding SNRdB and SSIM values, obtained with different regularizations. The
degradation consists of a 3× 3 uniform blur, 90% of decimation and AWG noise with α = 10.
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(h) ST-NLTV-`∞.

Fig. 2. Relative error ‖x[n] − x[∞]‖/‖x[∞]‖ vs computational time (in seconds), where x[∞] denotes the solution computed after
a large number of iterations (5000 iterations). Red line: direct projection. Blue line: epigraphical projection.

NLTV better preserves edges and fine details, one can observe
a color smearing in the reconstructed images. Figs. 1d and 1e
illustrate the results obtained with ST-TV-`2 and ST-NLTV-`2.
A significant reduction of color smearing can be noticed. In
particular, Fig. 1e shows that combining the structure tensor
with NLTV brings the advantages of both methods: preserved
details and reduced color smearing. Furthermore, the compari-
son between the images displayed in the first and second rows
indicates that the `2-norm performs better than the `∞-norm.
Note that, according to our tests, the nuclear norm leads to
poorer results than the `∞-norm.

Fig. 2 shows that the epigraphical approach (blue line)
leads to a faster convergence than a direct projection method
(red line). In particular, for TV-`∞ and NLTV-`∞, the conver-
gence is about 10 to 40 times faster. The results refer to the
airplane image cropped at 256× 256 (a similar behaviour was
observed for other images of different sizes). The stopping cri-
terion is set to ‖x[n+1]−x[n]‖ ≤ 10−4‖x[n]‖ where (x[n])n∈N

denotes the sequence generated by M+LFBF. For the `1,p-ball
projectors needed by the direct method, we used the software
available on-line [23, 24]. Our codes were developed in Mat-
lab R2011b (the operators F and F> being implemented in
C using mex files) and all the programs executed on an Intel
Xeon CPU at 2.80 GHz with 8 GB of RAM.

5. CONCLUSION

We have proposed a new epigraphical technique for solving
constrained convex optimization problems arising in multicom-
ponent image restoration. The obtained results demonstrate
the advantages of using the structure tensor and non-local gra-
dients in this context. We have also shown that an `1,p-norm
constitutes a good choice for defining smoothness constraints.
Furthermore, our experiments indicate that the epigraphical
method converges faster than the approach based on the direct
computation of the projections via standard iterative solutions.
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