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Abstract—It was recently demonstrated in [13] that the denois-
ing performance of Non-Local Means (NLM) can be improved at
large noise levels by replacing the mean by the robust Euclidean
median. Numerical experiments on synthetic and natural images
showed that the latter consistently performed better than NLM
beyond a certain noise level, and significantly so for images with
sharp edges. The Euclidean mean and median can be put into
a common regression (on the patch space) framework, in which
the `2 norm of the residuals is considered in the former, while
the `1 norm is considered in the latter. The natural question then
is what happens if we consider `p (0 < p < 1) regression? We
investigate this possibility in this paper.

Index Terms—Image denoising, non-local means, non-local Eu-
clidean medians, edges, inlier-outlier model, robustness, sparsity,
non-convex optimization, iteratively reweighted least squares.

I. INTRODUCTION

In the last few years, some very effective frameworks for
image restoration have been proposed that exploit non-locality
(long-distance correlations) in images, and/or use patches
instead of pixels to robustly compare photometric similarities.
The archetype algorithm in this regard is the Non-Local Means
(NLM) [1]. The success of NLM triggered a huge amount
of research, leading to state-of-the-art algorithms that exploit
non-locality and/or the patch model in specialized ways; e.g.,
see [3], [4], [9], [5], [6], [7], [8], to name a few. We refer the
interested reader to [2], [7] for detailed reviews. Of these, the
best performing method till date is perhaps the hybrid BM3D
algorithm [9], which effectively combines the NLM framework
with other classical algorithms.

To setup notations, we recall the working of NLM. Let
u = (ui) be some linear indexing of the input noisy image.
The standard setting is that u is the corrupted version of some
clean image f = (fi),

ui = fi + σzi, (1)

where (zi) is iid N (0, 1). The goal is to estimate (approximate)
f from the noisy measurement u, possibly given a good
estimate of the noise floor σ. In NLM, the restored image
û = (ûi) is computed using the simple formula

ûi =

∑
j∈S(i) wijuj∑
j∈S(i) wij

, (2)
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where wij is some weight (affinity) assigned to pixels i and
j. Here S(i) is the neighborhood of pixel i over which the
averaging is performed. To exploit non-local correlations, S(i)
is ideally set to the whole image domain. In practice, however,
one restricts S(i) to a geometric neighborhood, e.g., to a
sufficiently large window of size S × S around i [1]. The
other idea in NLM is to set the weights using image patches
centered around each pixel. In particular, for a given pixel i,
let Pi denote the restriction of u to a square window around
i. Letting k be the length of this window, this associates every
pixel i with a point Pi in Rk2

(the patch space). The weights
in standard NLM are set to be

wij = exp
(
− 1

h2
‖Pi −Pj‖2

)
, (3)

where ‖Pi −Pj‖ is the Euclidean distance between Pi and
Pj as points in Rk2

, and h is a smoothing parameter. Along
with non-locality, it is the use of patches that makes NLM
more robust in comparison to pixel-based neighborhood filters
[12], [11], [10].

Recently, it was demonstrated in [13] that the denoising
performance of NLM can be improved (often substantially
for images with sharp edges) by replacing the `2 regression
in NLM with the more robust `1 regression. More precisely,
given weights wij , note that (2) is equivalent to performing
the following regression (on the patch space):

P̂i = arg min
P

∑
j∈S(i)

wij‖P−Pj‖2, (4)

and then setting ûi to be the center pixel in P̂i. Indeed, this
reduces to (2) once we write the regression in terms of the
center pixel ûi. The idea in [13] was to use `1 regression
instead, namely, to compute

P̂i = arg min
P

∑
j∈S(i)

wij‖P−Pj‖, (5)

and then set ûi to be the center pixel in P̂i. Note that (5)
is a convex optimization, and the minimizer (the Euclidean
median) is unique when k > 1 [14]. The resulting estimator
was called the Non-Local Euclidean Medians (NLEM). A
numerical scheme was proposed in [13] for computing the
Euclidean median using a sequence of weighted least-squares.
It was demonstrated that NLEM performed consistently better
than NLM on a large class of synthetic and natural images,
as soon as the noise was above a certain threshold. More
specifically, it was shown that the bulk of the improvement
in NLEM came from pixels situated close to edges. An inlier-
outlier model of the patch space around an edge was proposed,
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and the improvement was attributed to the robustness of (5) in
the presence of outliers [17].

In this paper, we show how a simple extension of the above
idea can dramatically improve the denoising performance of
NLM, and even that of NLEM. This is the content of Section II.
In particular, a general optimization and algorithmic framework
is provided that includes NLM and NLEM as special cases.
Some numerical results on synthetic and natural images are
provided in Section III to justify our claims. Possible extensions
of the present work are discussed in Section IV.

II. NON-LOCAL PATCH REGRESSION

A. Robust patch regression

It is well-known that `1 minimization is more robust to
outliers than `2 minimization. A simple argument is that the
unsquared residuals ‖P−Pj‖ in (5) are better guarded against
the aberrant data points compared to the squared residuals
‖P − Pj‖2. The former tends to better suppress the large
residuals that may result from outliers. This basic principle
of robust statistics can be traced back to the works of von
Neumann, Tukey [16], and Huber [17], and lies at the heart
of several recent work on the design of robust estimators; e.g.,
see [15], and the references therein.

A natural question is what happens if we replace the `1

regression in (5) by `(p<1) regression? In general, one could
consider the following class of problems:

P̂i = arg min
P

∑
j∈S(i)

wij‖P−Pj‖p. (6)

The intuitive idea here is that, by taking smaller values of p,
we can better suppress the residuals ‖P−Pj‖ induced by the
outliers. This should make the regression even more robust
to outliers, compared to what we get with p = 1. We note
that a flip side of setting p < 1 is that (6) will no longer be
convex (this is essentially because t 7→ |t|p is convex if and
only if p ≥ 1), and it is in general difficult to find the global
minimizer of a non-convex functional. However, we do have a
good chance of finding the global optimum if we can initialize
the solver close to the global optimum. The purpose of this
note is to numerically demonstrate that, for all sufficiently
large σ, the û obtained by solving (6) (and letting ûi to be the
center pixel in P̂i) results in a more robust approximation of
f as p → 0, than what is obtained using NLM. Henceforth,
we will refer to (6) as Non-Local Patch Regression (NLPR),
where p is generally allowed to take values in the range (0, 2].

B. Iterative solver

The usefulness of the above idea actually stems from the fact
that there exists a simple iterative solver for (6). In fact, the idea
was influenced by the well-known connection between ‘sparsity’
and ‘robustness’, particularly the use of l(p<1) minimization for
best-basis selection and exact sparse recovery [18], [19], [22].
We were particularly motivated by the iteratively reweighted
least squares (IRLS) approach of Daubechies et al. [21], and a
regularized version of IRLS developed by Chartrand for non-
convex optimization [19], [20]. We will adapt the regularized
IRLS algorithm in [19], [20] for solving (6). The exact working

of this iterative solver is as follows. We use the NLM estimate
to initialize the algorithm, that is, we set

P(0) =

∑
j∈S(i) wijPj∑
j∈S(i) wij

. (7)

Then, at every iteration k ≥ 1, we write ‖P−Pj‖p = ‖P−
Pj‖2 · ‖P − Pj‖p−2 in (6), and use the current estimate to
approximate this by ‖P−Pj‖2 ·‖P(t−1)−Pj‖p−2. This gives
us the surrogate least-squares problem

P(t) = arg min
P

∑
j∈S(i)

wij
‖P−Pj‖2(

‖P(t−1) −Pj‖2 + ε(t)
)1−p/2 .

(8)
Here ε(t) > 0 is used as a guard against division by zero, and
is gradually shrunk to zero as the iteration progresses. We refer
the reader to [19] for details. The solution of (8) is explicitly
given by

P(t) =

∑
j∈S(i) wijµ

(t)
j Pj∑

j∈S(i) wijµ
(t)
j

, (9)

where
µ
(t)
j = (‖P(t−1) −Pj‖2 + ε(t))p/2−1.

The minimizer of (6) is taken to be the limit of the iterates,
assuming that it exists. We note that (9) can be expressed as a
gradient descent step (with appropriate step size) of a smooth
surrogate of (6). This interpretation leads to the well-known
Weiszfeld algorithm (for the special case p = 1), which is
known to converge linearly [26], [27]. Following a slightly
different interpretation, a preliminary analysis of the global
and local convergence properties of (9) (particularly in the
non-convex regime 0 < p < 1) was done in [29].

The overall computational complexity of NLPR is O(k2S2I)
per pixel, where I is the average number of iterations. For
NLM, the complexity is O(k2S2) per pixel.

Algorithm 1 Non-Local Patch Regression (NLPR)
Input: Noisy image u = (ui), and parameters h, S, k, p.
Return: Denoised image û = (ûi).
(1) Extract patch Pi of size k × k at every pixel i.
(2) For every pixel i, do

(a) Set wij = exp(−‖Pi −Pj‖2/h2) for every j ∈ S(i).
(b) Sort wij , j ∈ S(i), in non-increasing order.
(c) Let j1, j2, . . . , jS2 be the re-indexing of j ∈ S(i) as

per the above order.
(d) Find patch P that minimizes

∑[S2/2]
r=1 wijr‖P−Pj‖p.

(e) Set ûi to be the center pixel in P.

C. Robustness using k-nearest neighbors

We noticed in [13] that a simple heuristic often provides
a remarkable improvement in the performance of NLM. In
(2), one considers all patches Pj , j ∈ S(i), drawn from the
geometric neighborhood of pixel i. However, notice that when
a patch is close to an edge, then roughly half of its neighboring
patches are on one side (the correct side) of the edge. Following
this observation, we consider only the top 50% of the the

1346



neighboring patches that have the largest weights. That is, the
selected patches correspond to the [r/2]-nearest neighbors of
Pi in the patch space, where r = |S(i)|. While this tends to
inhibit the diffusion at low noise levels (in smooth regions), it
was demonstrated in [13] that it can significantly improve the
robustness of NLM and NLEM at large σ. We will also use
this heuristic in NLPR. The overall scheme is summarized in
Algorithm 1. We use S(i) to denote a window of size S × S
centered at pixel i in the algorithm.

III. NUMERICAL EXPERIMENTS

To understand the denoising performance of NLPR, we
provide some limited results on synthetic and natural images.
The main theme of our investigation would be to understand
how the performance of NLPR changes with the regression
index p. For a quantitative comparison of the denoising results,
we will use the standard peak-signal-to-noise ratio (PSNR).
For an N -pixel image, with intensity scaled to [0, 1], this is
defined to be −10 log10(ε), where ε = (1/N)

∑N
i=1(ûi− fi)2.
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Fig. 1. Left: Test image Checker. Right: PSNRs obtained using NLPR
for the test image Checker at different σ and p. To compare the different
regressions, we skipped steps (b) and (c) in Algorithm 1, i.e., we consider all
the neighboring patches, and not just the top 50%.

We first consider the test image of Checker used in [13].
This serves as a good model for simultaneously testing the
denoising quality in smooth regions and in the vicinity of
edges. We corrupt Checker as per the noise model in (1). We
then compute the denoised image using Algorithm 1, with
the exception that we skip steps (b) and (c), that is, we use
the full neighborhood S(i). We initialize the iterations of the
IRLS solver using (7). For all the experiments in this paper,
we fix the parameters to be S = 21, k = 7, and h = 10σ.
These are the settings originally proposed in [1]. The results
obtained using these settings are not necessarily optimal, and
other settings could have been used as well. The point is to
fix all the parameters in Algorithm 1, except p. This means
that the same wij are used for different p. We now run the
above denoising experiment for σ = 10, 20, . . . , 100, and for
p = 0.1, 0.5, 1, 1.5, 2.

The results are shown in Figure 1. We notice that, beyond
a certain noise level, NLPR performs better when p is close
to zero. In fact, the PSNR increases gradually from p = 2 to
p = 0.1, for a fixed σ. At lower noise levels, the situation
reverses completely, and NLPR tends to perform better around
p = 2. A possible explanation is that the true neighbors in
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(a) Clean and noisy edge (σ = 0.3).
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Fig. 2. Ideal edge of length 256 used to evaluate the performance of
NLPR. Each patch Pm is formed using 3 points around position m, i.e., the
patch space is of dimension 3 (shown in Figure 3). The reference patch Pi

corresponds to the position i = 130 (situated close to the edge). The weights
in 2b are computed between the reference patch and the neighboring patches
Pj , j ∈ [i− 20, i+ 20].

patch space are well identified at low noise levels, and since
the noise is Gaussian, `2 regression gives statistically optimal
results.
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(a) 3d patch space.
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(b) First 2 coordinates.

Fig. 3. Inlier-outlier model of the patch space for the reference point marked
in Figure 2. Note that the estimate returned by NLPR gets better as p goes
from 2 to 0.1. This is consistent with the results in Figure 1.

An analysis of the above results shows us that, as p → 0,
the bulk of the improvement comes from pixels situated in the
vicinity of edges. A similar observation was also made in [13]
for NLEM. To understand this better, we recall the ideal 0-1
edge model used in [13]. This is shown in Figure 2a. We add
noise of strength σ = 0.3 to the edge, and denoise it using
NLPR. We examine the regression at a reference point situated
just right to the edge (cf. Figure 2b). The patch space at this
point is specified using k = 3 and S = 41. The distribution
of patches is shown in Figure 3. Note that the patches are
clustered around the centers A = (0, 0, 0) and B = (1, 1, 1).
For the reference point, the points around A are the outliers,
while the ones around B are the inliers. We now perform `p

regression on this distribution for p = 0.1, 1, and 2. The results
obtained (Algorithm 1, steps (b) and (c) skipped) from a single
noise realization are shown in Figure 3. The exact values of
the estimate in this case are 0.61 (p = 2), 0.75 (p = 1), and
0.98 (0.1). The average estimate over 10 noise realizations are
0.58 (p = 2), 0.82 (p = 1), and 0.95 (p = 0.1).

We note that the working of the IRLS algorithm provides
some insight into the robustness of `p regression. Note that

1347



5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

 

 

p = 2

p = 1.5

p = 1

p = 0.5

Fig. 4. The multipliers µ(∞)
j , j ∈ S(i), in (9) (sorted in non-increasing

order) for the experiment with the ideal edge.

TABLE I
COMPARISON OF NLM AND NLPR (p = 0.1) AT NOISE LEVELS

σ = 10, 20, . . . , 100 (RESULTS AVERAGED OVER 10 NOISE REALIZATIONS)

Image Method PSNR (dB)
NLM 34.25 29.76 26.88 25.21 24.08 23.34 22.81 22.42 22.05 21.80House
NLPR 33.23 30.23 27.86 26.40 25.45 24.69 24.10 23.52 22.93 22.41
NLM 32.38 27.38 24.94 23.53 22.65 22.03 21.62 21.30 21.07 20.87Barbara
NLPR 31.50 28.42 26.51 25.39 24.57 23.84 23.21 22.60 22.06 21.56
NLM 30.78 26.71 24.73 23.64 22.95 22.48 22.12 21.88 21.65 21.45Boat
NLPR 30.54 27.23 25.50 24.50 23.87 23.40 22.95 22.54 22.11 21.68
NLM 31.39 27.90 24.78 22.93 21.89 21.14 20.62 20.20 19.88 19.61Cameraman
NLPR 31.17 27.46 25.15 25.15 22.68 22.12 21.67 21.36 20.97 20.63
NLM 32.34 27.66 24.95 23.13 21.89 21.01 20.43 19.98 19.63 19.40Peppers
NLPR 31.20 27.67 25.56 24.18 23.03 22.15 21.62 21.13 20.70 20.34

when p = 2 (NLM), the reconstruction in (6) is linear; the
contribution of each noisy patch Pj is controlled by the
corresponding weight wij . On the other hand, the reconstruction
is non-linear when p < 2. The contribution of each Pj is
controlled not only by the respective weights, but also by
the multipliers µ(t)

j . In particular, the limiting value of the
multipliers dictate the contribution of each Pj in the final
reconstruction. Figure (4) gives the distribution of the sorted
multipliers (at convergence) for the experiment described above.
In this case, the large multipliers correspond to the inliers, and
the small multipliers correspond to the outliers. Notice that
when p = 0.5, the tail part of the multipliers (outliers) has
much smaller values (close to zero) compared to the leading
part (inliers). In some sense, the iterative algorithm gradually
‘learns’ the outliers from the patch distribution as the iteration
progresses, which are finally taken out of estimation.

IV. DISCUSSION

We compare the PSNRs obtained using NLPR (p = 0.1)
with that of NLM for some standard natural images in Table
I. We notice that, for each of the images, NLPR consistently
outperforms NLM at large noise levels. The gain in PSNR
is often as large as 2 dB. The results obtained for Barbara
using NLM and NLPR are compared in Figure 5. Note that, as
expected, robust regression provides a much better restoration
of the sharp edges in the image than NLM. What is probably
surprising is that the restoration is superior even in the textured
regions. Note, however, that NLM tends to perform better
in the smooth regions. For example, we observe some more
noise grains in the smooth regions in Figure 5d compared that

(a) Barbara. (b) Corrupted (σ = 40).

(c) NLM output. (d) NLPR output (p = 0.1).

Fig. 5. Denoising results on the 256× 256 Barbara image obtained using
NLM and NLPR. The parameters used are: S = 21, k = 7, and h = 10σ.
The PSNRs are respectively: (b) 16.11 dB, (c) 23.53 dB, and (d) 25.39 dB.
Notice that the edges and the texture patterns (on the scarf, pants, and table
cloth) are much better restored in NLPR.

in Figure 5c. This suggests that an ‘adaptive’ optimization
framework, which combines `2 regression (in smooth regions)
and `(p≤1) regression (in the vicinity of edges), might possibly
perform better than a fixed `p regression. Some other possible
extensions of the present work are as follows:
• Possibility of using more efficient numerical algorithms

for solving (6).
• Finding better ways of estimating the denoised pixel ûi

from the estimated patch P̂i (the projection method used
here is probably the simplest).

• Note that we get an estimate a given pixel from all the
neighboring (reconstructed) patches. Can the redundancy
be exploited somehow to improve the estimation?

• Use of ‘better’ weights than the ones used in standard
NLM [24], [25].

• Formulation of a ‘joint’ optimization framework for (6),
where the optimization is performed with respect to wij

and P [6].
To conclude, we note that it was recently observed in [28]

that the weights in NLM and the associated estimate (2) can
be derived from a two-step optimization of a non-convex cost.
Based on this formulation, the authors in [28] argue that the
wij in NLPR should be set using the p-th power of the residual,
namely as ‖Pi − Pj‖p, as opposed to ‖Pi − Pj‖2 used in
this paper (of course, this also requires us to use a different
rule for setting h). This is an interesting observation that will
be investigated in future work.
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