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ABSTRACT
In Blind Source Separation, or BSS, a set of source signals are
recovered from a set of mixed observations without knowl-
edge of the mixing parameters. Originated for real signals,
BSS has recently been applied to finite fields, enabling more
practical applications. However, classical entropy-based tech-
niques do not perform well in finite fields. Here, we propose
a non-linear encoding of the sources to increase the discrim-
inating power of the separation methods. Our results show
that the encoding improves the success rate of the separa-
tion for sources with few samples in large finite fields, both
conditions met in practical networking applications. Our re-
sults open new possibilities in the context of network coding
–wherein linear combinations of packets are sent in order to
maximize throughput and increase loss immunity– by reliev-
ing the nodes from the need to send the combination coeffi-
cients, thus reducing the overhead cost.

Index Terms— Blind Source Separation, Channel Cod-
ing, Galois Fields, Independent Component Analysis, Net-
work Coding.

1 Introduction
Blind Source Separation (BSS) [1, 2] consists in recovering
a set of source signals S from a set of mixed signals X =
f(S), also referred to as observations, without knowing the
sources themselves nor the mixing process parameters. This
is a subject that has been intensively investigated in the last
three decades, due to its potential numerous applications in
speech recognition, sensor/biomedical signal processing, etc.

The Independent Component Analysis (ICA) [3, 4] ap-
proach solves the BSS problem relying on the assumption that
the sources are statistically independent and non-Gaussian.
Given a set of observations, ICA algorithms return a set of
estimated source signals that maximize a separation crite-
rion, referred to as contrast function. Separation criteria can
be based on information-theoretic principles, e.g., maximiz-
ing the entropy or minimizing a Kullback-Leibler divergence,
while other approaches build on higher order statistics. In any
case, the assumptions of independence and non-Gaussianity
are explicitly used.

One should note that ICA can only retrieve the original
sources up to some ambiguities: there will be a permutation
ambiguity, i.e., the algorithm will not be able to tell which
reconstructed source is which, and scaling ambiguity, i.e., the
reconstructed sources will be identified up to a scaling factor.

ICA has been recently extended to the case of finite
fields [5], which presents several additional challenges due to
the nature of the operations defined over a finite field. In par-
ticular, a technique can be based on the fact that the entropy
of any linear combination of statistically independent random
variables over GF(q) is larger than the entropy of any of the
components, as long as none of them is uniform. Separation
is therefore possible by finding the inverse linear transfor-
mation that minimizes the marginal entropy of the resulting
combinations. Since the operations take place in a finite field,
an exhaustive approach is possible, i.e., to try any possible
linear combinations of observations until we find the one that
has the lowest entropy [5]. While the method was introduced
at first as an interesting theoretical result, its potential can be
seen for practical applications too. For instance, it has been
suggested that BSS schemes over finite fields can be used in
the context of eavesdropping over MIMO multi-user digital
communications systems [6].

Another very interesting potential application for an effi-
cient source separation algorithm over finite fields is in the
design of a transmission scheme similar to Network Cod-
ing (NC) [7]. In NC, instead of merely relaying packets, the
intermediate nodes of a network send linear combinations of
the packets they have previously received, with random coef-
ficients taken from a finite field [8–11]. NC, used as an al-
ternative to traditional routing, has proved beneficial to real-
time streaming applications, both in terms of maximization
of the throughput and in terms of reduction of the effects of
losses [12–17]. However, in practical Network Coding ap-
proaches, the random coefficients must be added to the packet
as headers [11], incurring an overhead that can be prohibitive
if the maximum packet size is small. On the other hand, in a
BSS based approach, it could be possible to relieve the nodes
from the need to include the coefficients in the packets, thus
reducing significantly the amount of data that has to be trans-
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mitted to the receiver in order to decode the packets. Such an
approach would instead rely on the capability of the receivers
to reconstruct the coefficient themselves.

In this article we improve the results of the separation
method by increasing the discriminating power of the algo-
rithm without adding constraints on the distribution of the
sources. The rationale is that many of the sources in today’s
applications do have a distribution close to the uniform, e.g.,
compressed videos images or sound, so the above methods
fail in this case. We propose to pre-process the sources with
a non-linear encoding which, as we will show, increases the
separability of the ICA method towards a more practical ap-
plication with higher GF orders and sources closer to uniform.

The rest of this article is organized as follows: in Section 2
we give an overview on some relevant related work. In Sec-
tion 3, we introduce our proposed approach for blind source
separation for sources in GF(2b) and the rationale behind it.
Then in Section 4 we validate our approach with experimen-
tal results and a comparison with a state-of-the-art exhaus-
tive entropy-based source separation algorithm. In Section 5
we draw conclusions and outline future work. Finally, in the
Appendix, we quantify the augmented discriminating power
granted to the algorithm by the non-linear coding we intro-
duced.

2 Related Work
Several algorithms have been proposed to reduce the search
space and the execution time of blind source separation algo-
rithms, at the expenses of the accuracy [18, 19].

One such technique has been proposed for finite fields of
prime order, but can be easily extended to the general case [5].
At each iteration, the algorithm finds a couple of observation
vectors xi and xj and a scalar k in the finite field such that
H(xi+kxj)<H(xi) and replaces H(xi) with H(xi+kxj).
When no possible substitution can be found, the algorithm
terminates, and the final value of the xi will be the recon-
struction of the original sources. This algorithm is signifi-
cantly faster then an exhaustive search, but is prone to local
minima. Other methods have been proposed, e.g., approxi-
mating the entropy with −p log(p), where p is the probability
of the most probable element [18, 19].

Since the scope of this paper is focused on success rate
rather than complexity, we shall compare ourself to the As-
cending Minimization of Entropies for ICA method [5],
originally proposed for GF(2). This method extracts a single
source, then removes the contribution from this source to the
mixtures and repeats this process N times, after which it has
found all N sources, restricting the search space to vectors
linearly independent from the ones recovered so far. Our
technique will also follow the same approach, but the search
space will be further restricted to vectors that yield admissible
sources, i.e., codewords.

Algorithm 1 Separation algorithm.

1: Input: (N × T ) mixed sample matrix X.
2: Output: (N × T ) separated source matrix S̃.
3: V ← ∅, W ← ∅;
4: for all w of length N in GF

(
2b+1

)
do

5: z̃← w
⊤
X;

6: if z̃ is a codeword then
7: V ← V ∪ {w};
8: end if
9: end for

10: repeat
11: w∗ ← arg min

w∈V

{
H

(
DECODE

(
w⊤X

))}
;

12: if w∗ 6∈ SPAN (W) then
13: W ←W ∪ {w∗};
14: end if
15: V ← V − {w∗};
16: until ‖W‖ = N
17: W← matrix built from the row vectors inW ;
18: Z̃←W

⊤
X;

19: S̃← DECODE
(
Z̃

)
;

3 Proposed approach
In this section, we describe our proposed method to separate
a number of linearly combined (mixed) independent sources
defined in a finite field. Generally speaking, the ability of an
algorithm to identify a source given a set of mixed observa-
tion (demixing) stems from the ability to identify a property
that holds true for the original sources and does not for the
mixtures. For instance, entropy based methods assume that
the original sources have lower entropy than the mixtures.

Our main idea is to increase the discriminating power of
the algorithm by pre-processing the sources with an error-
detecting code. The code should be such that the probability
of a mixture belonging to the code is small. Also, the code
cannot be linear, otherwise mixtures would always belong to
it; we therefore consider only non-linear codes.

A simple example of non-linear code is the odd-parity
bit-code. A parity bit-code is a systematic code consisting
in adding a parity bit to the source symbol to ensure that
the number of bits with the value one in the encoded sym-
bol is always even (even-parity bit-code) or odd (odd-parity
bit-code). Parity bit codes are the simplest form of error de-
tecting code, and have been in use, both in hardware and in
software applications, since the 1950s. For our purposes, we
use an odd-parity bit-code because it is obviously non-linear,
as the null-string is not a codeword (since it has zero bits with
value one and zero is an even number). A detailed analysis
of the discriminating power of the odd-parity bit-code, i.e., its
ability to distinguish between sources and mixtures, is given
in the Appendix.

Let us now consider a set of N independent source signals
s0, s1, . . . , sN−1, each containing T samples, defined in a fi-
nite field GF

(
2b
)
. First of all, the sources are encoded with

an odd-parity bit-code, such that each element in the encoded
source belongs to GF

(
2b+1

)
, because of the added parity bit,

and has an odd number of bits equal to one in its binary rep-
resentation. Let us call zn the encoded version of a source
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Fig. 1. Comparison between the reference and the proposed technique for
finite field GF(2). The failure rate, i.e., the percentage of sources that the
algorithm was not able to identify, is plotted against the number of samples
in the mixture in log-scale.

sn, and Z the N -by-T matrix which has zn as its n-th row,
for n ∈ {0 . . .N − 1}. These encoded sources are combined
with an unknown N -by-N mixing matrix A, also defined in
GF

(
2b+1

)
: X=AZ.

In order for our separation problem to have a solution,
we assume that the matrix A is invertible, i.e., rank(A)=N .
Each row xn of X is a linear combination, or mixture, of the
encoded sources. In order to recover the original sources, we
proceed according to Algorithm 1, as follows. For each vector
w of length N in GF

(
2b+1

)
, we try to demix one encoded

source z̃=w
⊤
X.

If all T elements of z̃ are codewords, we decode the vec-
tor, i.e., we remove the parity bit from its elements, thus ob-
taining s̃, and estimate the entropy H(s̃). Notice that the
probability of a random mixture being a codeword decreases
with T . After all the vectors w have been tried, we select the
N linearly independent vectors corresponding to the demixed
sources with the lowest entropy. The matrix W composed as
the horizontal concatenation of these vectors is our estimation
of the inverse matrix of A. We limit ourselves to a family of
linearly independent vectors under the assumption that, being
W the inverse of A, it has full rank N . The demixed sources
corresponding to this matrix Z̃ = W

⊤
X will represent our

estimation of the encoded sources. It will suffice to remove
the parity bits in order to recover the original sources up to a
scaling and permutation ambiguity.

4 Experimental Results
In the following, we present the results relative to the sepa-
ration of N sources of T elements for the proposed bit-code
based technique, and compare them with the results achiev-
able using an exhaustive entropy-based technique at the same
rate. The reference technique simply consists in identifying
the N linear combinations of observations such that the com-
bination coefficients are linearly independent and the entropy
is minimized [5, 19]. Our technique, on the other hand, is re-
strained to the linear combinations of observations that yield
to admissible codewords. The improvement provided by the
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Fig. 2. Comparison between the reference method and the proposed tech-
nique for finite field GF(4). The failure rate is plotted against the number of
samples in the mixture in log-scale.
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Fig. 3. Comparison between the reference method and the proposed tech-
nique for a fixed number of sources and samples. The failure rate is plotted
against the size of the finite field.

augmented discriminating power can be observed in Figs. 1
and 2 where, for different sizes of the finite field and different
number of sources, we report the failure rate of the technique
vs. the number of samples of the observations in log-scale.
The failure rate is simply 1 minus the success rate, where the
success rate is the number of correctly identified sources di-
vided by the total number of sources. Note that, as mentioned
before, a source is considered identified up to a permutation
and scaling ambiguity. It is worth noting that, thanks to the
properties of the bit-code, even though the scaling ambigu-
ity is still present, it is in practice drastically reduced (see the
Appendix for more details). We observe that our technique
consistently outperforms the reference technique, thanks to
the possibility of eliminating candidate solutions with low en-
tropy on the grounds that they are not codewords. Since the
failure rate converges to zero with the number of samples, as
we expected, the gain decreases with the length of the sources.
However, the introduction of the non-linear code significantly
improves the performances for shorter sources, making the
separation viable for relatively shorter signals.

We also report, in Fig. 3, a comparison of the two tech-
niques with fixed number of sources (N = 2) and fixed num-
ber of samples (T = 256) to observe how the performances
of the two methods vary w.r.t. the size of the finite field. We
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observe that both techniques perform better when they oper-
ate within a larger finite field, but the gain of the reference
technique stays more or less constant around 6%.

5 Conclusions and Future Work
In this work we proposed to use a non-linear channel encod-
ing of source signals over a finite field in order to increase the
discriminating power of blind source separation methods for
linear mixtures in a finite field. In particular, we use an odd-
parity bit code, which has the advantage of being very simple
to implement. However, these results can be extended to a
more general case of a non-linear error detecting code.

The discriminating power is augmented in the sense that
the entropy based method will be assisted by the error detect-
ing coding, restraining the estimation of the entropy to the so-
lutions that are admissible in the sense that the reconstructed
source is a codeword. This eliminates several solutions that,
even if they present low entropy and could be mistakenly
identified as sources by the reference technique, cannot be
admitted as they are not part of the code. Our experimental
results show that the proposed technique consistently outper-
forms the reference method, especially in the case of sources
with a small number of available samples, which is more crit-
ical for the entropy-based methods, making the blind source
separation more suitable for practical applications, where the
number of samples is typically limited by the size of a packet.

These results suggest that a viable future work is to evalu-
ate the performance of the algorithm when the entropy-based
method is augmented with a more efficient error detecting
code, i.e., a code able to provide better discrimination with
lower overhead. This could allow the implementation of a
transmission system similar to Network Coding, but with a
substantially reduced overhead since the combination coeffi-
cient used in the mixing functions do not need to be transmit-
ted.

6 Appendix
In this Appendix we shall evaluate the probability of a random
linear combination of N sources encoded with an odd-parity
bit code of being a codeword itself. This probability is useful
to assess the augmented discriminating power provided by the
encoding w.r.t. the separation of the sources.

Let C be the application associating a codeword to each
element of GF

(
2b−1

)
: C:GF

(
2b−1

)
→GF

(
2b
)
. This sim-

ply amounts to add a odd-parity bit to the binary repre-
sentation of the element. Let IC⊂GF

(
2b
)

be the im-
age of C. One important property of C is that, by con-
struction, 0 6∈IC and 1∈IC , ∀b∈N. Also, it is easy to see

that ‖IC‖=
‖GF(2b)‖

2 =2b−1, i.e., half of the elements of
GF

(
2b
)

are codewords. We can therefore infer that, if a
value α is drown from a uniform distribution over GF

(
2b
)
,

P {α∈IC}=
1
2 .

Let us consider a monomial x=αs, with α∈GF
(
2b
)

and
s∈IC . In order to evaluate the probability P {x∈IC}, we

decompose the sample space in the following way:

P {x∈IC}= P {αs∈IC |α=0}P {α=0}
+P {αs∈IC |α=1}P {α=1}
+P {αs∈IC |α6=0,1}P {α6=0,1} .

(1)

We operate this decomposition on the base of the proper-
ties of elements 0 and 1 w.r.t. multiplication: 0·s=0 6∈IC and
1·s=s∈IC with probability 1. In the remaining cases, i.e.,
when α6=0 and α6=1, it is easy to verify that the probability
of the monomial being a codeword is 1

2 , based on the fact
that the product of a scalar other than 0 for all the other el-
ements of the finite amounts to a reordering of the elements.
The probability of α=0 (respectively, α=1) being one out of
the number of elements in GF

(
2b
)
, we can rewrite Eq. (1) as:

P {x∈IC}=0· 1
2b
+1· 1

2b
+ 1

2 ·
2b−2
2b

= 1
2 .

The properties of elements zero and one w.r.t. multiplica-
tions become relevant if we consider, instead of the product
of two scalars, the product of a scalar by a vector of T ele-
ments, i.e., x=αs with α∈GF

(
2b
)

and s∈IT
C . We define a

codevector as being any vector of GF
(
2b
)T

such that each
one of its elements is a codeword. In this case we observe
that ∀t∈{1 . . . T }, 1·st 6∈IC and 0·st∈IC . In other words, if
α=0 or α=1, the events αst∈IC for all t are not independent,
whereas given any other α, these events are independent with
probability 1

2 .
We can therefore operate the same partition as in Eq. (1),

and write the probability of x∈IT
C as a function of the finite

field size 2b, or equivalently of b, and the vector length T :
π1(b, T )

∆

=P
{
x∈IT

C

}
=2−b+2−T (1−21−b). (2)

The function π1(b, T ) is defined as the probability of a
single (vector) monomial αs of being a codevector. Let us
now evaluate the probability π2(b, T ) of a mixture of two
sources of being a codevector. Note that all sources are by
hypothesis codevectors. Let x2=α1s1+α2s2. If we operate
a decomposition analogous to that of Eq. (2) we obtain:

π2(b, T )
∆

=P
{
x2∈I

T
C

}

= 22(1−b)−1 + 2−T
(
1− 22(1−b)

)
.

(3)

For the case of a linear combination of N sources,let us
consider a vector xN=

∑N

n=1 αnsn; the expression in Eq. (3)
can be generalized for N sources as follows:

πN (b, T )
∆

=P
{
xN∈IT

C

}

= 2N(1−b)−1+2−T
(
1−2N(1−b)

)
.

This probability converges to πN (b)=2N(1−b)−1 for T→∞,
therefore we observe that the probability of a random combi-
nation of N encoded sources in GF

(
2b−1

)
decreases with the

size of the finite field.
This probability can be interpreted as follows: if the algo-

rithm were based exclusively on the bit code, i.e., if it were
to identify as sources any codewords it finds, for sufficiently
long sources it would have a rate of false-positive equal of
πN (b). Of course our method does not rely solely on the dis-
criminating power of the code, but the coding is used to dras-
tically reduce the search space of the entropy-based method,
reducing the running time and improving the success rate.
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