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ABSTRACT

This paper proposes a methodology for the application of
multivariate kernel density estimation (KDE) to MMSE-
based image/video error concealment (EC). We show that the
estimation of the kernel bandwidth matrix for EC must follow
a criterion different from that of typical KDE problems. In
particular, we propose a bandwidth built as the product of a
structure matrix and a scale factor obtained with a minimum
square error criterion. We show that our proposal can achieve
average PSNR improvements larger than 1 dB with respect to
other state-of-the-art techniques.

Index Terms— kernel estimation, error concealment

1. INTRODUCTION

Achieving high QoS in multimedia applications is a very chal-
lenging task since the transmission of multimedia contents
over error prone channels may lead to errors or data losses.
The most advanced and utilized image and video coding sys-
tems (JPEG, H.264/AVC, etc.) are block-based so these er-
rors result in a loss of one or several macroblocks. In or-
der to mitigate the effect of these losses, error concealment
(EC) algorithms can be applied at the decoder. They take ad-
vantage of spatial and/or temporal correlations within the re-
ceived stream to recover the missing data. For image commu-
nication or video transmission, when temporal information is
not available or relevant, only spatial EC (SEC) is applicable.

A simple and common SEC technique is bilinear interpo-
lation [1] which is defined as the default SEC method in the
H.264/AVC codec. In order to better preserve important vi-
sual features, such as edges, a more advanced technique based
on Markov random fields was proposed in [2]. In [3], a se-
quential pixel-wise method that draws on orientation adaptive
interpolation was introduced. Bilateral filtering that exploits
a pair of gaussian kernels is treated in [4]. A switching con-
tent adaptive SEC algorithm was proposed in [5]. Inpainting
methods have also been successfully applied to EC problems
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[6]. A Hough transform based technique that aims at recov-
ering edges based on their visual properties was proposed in
[7]. Also, SEC techniques in a transformed domain have been
recently proven to produce high-quality reconstructions [8].

In our previous paper [9] we proposed an EC technique
which estimates a lost group of pixels (patch) through lin-
ear prediction (LP). This method provided better results than
other state-of-the-art techniques such as [1]-[8]. The LP pre-
dictor is obtained by minimizing the square error between
a context vector containing the available pixels around the
missing patch and a linear combination of context vectors
taken from the neighbourhood. This optimization was carried
out under constraints of non-negativity and sparsity via con-
vex relaxation. We also showed that the resulting estimation
could be approximated by a multivariate Nadaraya-Watson
regression with a Gaussian kernel [10]. This kernel-based
view of sparse linear prediction offers a number of advan-
tages. In particular, it can be interpreted as a minimum mean
square error (MMSE) estimation where the required proba-
bilities have been obtained through kernel density estimation
(KDE) [11]. In this paper, we will exploit and generalize
this new point of view which will allow us to apply powerful
Bayesian tools to EC. Moreover, we will see that the goal of
signal reconstruction is quite different from that of regression.
Since the main problem in KDE is the estimation of the band-
width matrix H , this means that H must be computed with
a criterion different from the one usually applied for KDE
or regression. Thus, we will propose a method to obtain the
bandwidth which is specifically conceived for reconstruction.

The paper is organized as follows. The EC framework is
detailed in Section 2. The proposed algorithm is described in
Sections 3 and 4. Simulations results are discussed in Section
5. The last section is devoted to conclusions.

2. PREVIOUS WORK AND CONCEALMENT
FRAMEWORK

The concealment framework used along this paper will be the
same as that of reference [9]. In the following, we briefly
summarize it. Let L be the set of missing pixels. Our goal
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is the prediction of a vector z0 = (xt0,y
t
0)
t, where x0 is a

patch of lost pixels in L and y0 contains a set of (adjacent and
available) context pixels. Let S be the set of available pixels
which can be employed for prediction. We will consider all
the possible vectors zj (j = 1, . . . ,M ) that can be built in S
with the same shape and dimensionality as z0 (that is, zj =
(xtj ,y

t
j)
t). Then, the LP estimator for x0 can be written as,

x̂0 =

M∑
j=1

wjxj , (1)

where w = (w1, . . . , wM )t is the vector of LP coefficients.
We consider a block-based codec where the missing re-

gion L is a 16×16 macroblock and the support area S com-
prises all the available pixels within the neighbouring mac-
roblocks around L. In this paper, we will employ an error
pattern as shown in Fig. 3(a) which corresponds to a rate of
block loss of approximately 25% with dispersed slicing struc-
ture [12]. Note, however, that our technique can be straight-
forwardly extended to other error patterns. We will also con-
sider 2×2 patches x0 of missing pixels and the corresponding
context y0 will comprise all the available pixels within the
6×6 pixel neighbourhood centred in x0. Vectors zj replicate
the shape of z0. These configurations are shown in Fig. 1(a).
Moreover, macroblocks are concealed sequentially from the
outer layer towards the centre (see Fig.1(b)). This filling or-
der is based on a reliability parameter and it is detailed in [9].

In our previous work [9], the weights wj of Eq. (1) are
obtained by minimizing the following square error,

εy(w;y0) =

∥∥∥∥∥∥y0 −
M∑
j=1

wjyj

∥∥∥∥∥∥
2

2

(2)

along with non-negativity (w � 0) and sparsity constraints.
In [9], we also showed that these LP weights could be approx-
imated through the following exponential function,

wj = Cexp

(
−1

2

‖y0 − yj‖2

mσ2

)
, (3)

where σ2 is a decay factor (σ2 = 10 in [9]), m is the di-
mensionality of the context vectors, and C is a normalization
factor so that

∑
j wj = 1. The resulting estimation can be

viewed as a particular form of Nadaraya-Watson regression
which employs a multivariate Gaussian kernel with a scalar
bandwidth h =

√
mσ2. This new kernel-based point of view

is exploited in the following section.

3. THE KERNEL-BASED APPROACH

Kernel density estimation (KDE) is a non-parametric way for
the estimation of the probability density function (pdf) associ-
ated to a given random process from a set of observations. In
our case, we are interested in the pdf of z = (xt,yt)t from the
set of observations {zj ; j = 1, . . . ,M}. The corresponding

(a) (b)
Fig. 1. (a) Example of configuration for the vectors x, y and z. S
denotes the set of known pixels and L denotes the set of lost pixels.
(b) Filling order for sequential reconstruction with 2×2 patches. The
regions illustrated by brighter level are recovered first.

KDE estimate can be written as,

p(z) =
1

M

M∑
j=1

1

|H|
K
(
H−1(z− zj)

)
=

1

M

M∑
j=1

K
(j)
Z (z).

(4)
where K(u) = exp(−utu/2)/

√
2π is the (Gaussian) kernel

employed andH is the bandwidth matrix. A more convenient
form of the KDE estimator is given in the last part of Eq.
(4), where p(z) adopts the form of a Gaussian mixture model
(GMM) and K(j)

Z (z) represents a multivariate Gaussian with
mean zj and covarianceH which can be decomposed as,

H = HHt =

(
HXX HXY
HY X HY Y

)
. (5)

In the following, we will also refer toH as bandwidth matrix.
Once p(z) has been obtained, different Bayesian estima-

tion techniques can be carried out. In particular, we are in-
terested in the MMSE estimator of x0 given y0. Since the
KDE estimate has the form of a GMM, we can adapt the well-
known MMSE estimation formulae for GMM models [13],
obtaining

x̂0 = E[x|y0] =
∑M
j=1 wj(y0)µ

(j)
X|Y (y0) (6)

wj(y0) =
K

(j)
Y (y0)∑M

i=1K
(i)
Y (y0)

(7)

µ
(j)
X|Y (y0) = E[x|y0,yj ] = xj +HXYH−1Y Y (y0 − yj)(8)

where K(j)
Y (y) represents a multivariate Gaussian with mean

yj and covariance HY Y . The estimator just derived can be
interpreted as a multivariate generalization of the Nadaraya-
Watson regressor defined by Eqs. (1) and (3). Note that,
unlike the MMSE estimator in [13], our proposal does not
require an off-line GMM training and can be easily applied
on-line from the set of available vectors zj(j = 1, ...,M).

4. BANDWIDTH ESTIMATION

4.1. Classical KDE estimation

The most important issue in KDE problems is the bandwidth
estimation (BE). There exist several approaches for it. A pop-
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(a) (b)

Fig. 2. Example of εy = εy(β
2;y0) for two different patches using

scalar, diagonal and complete bandwidths.

ular and usually recommended approach is that of the so-
called plug-in methods [14]. The goal of these methods is
the minimization of the asymptotic mean integrated squared
error (AMISE).

In this paper, we will consider the plug-in method for mul-
tivariate KDE described in [15, 16]. In this case, it is consid-
ered that H = β2FZZ , where β2 is a scale factor and FZZ is
a structure matrix. If FZZ is known, the problem is reduced
to the estimation of the scale factor β2. This requires a quite
complex procedure whose details can be found in [15]. It is
interesting to note that if we decompose FZZ in the same way
as in (5) the conditional mean of Eq.(8) does not depend on
β2, that is,
µ

(j)
X|Y (y0) = E[x|y0,yj ] = xj + FXY F

−1
Y Y (y0 − yj) , (9)

In [15], FZZ is approximated by the covariance matrix CZZ
of the observed samples {zj ; j = 1, . . . ,M}.

4.2. A minimum square error (MSE) approach

The classical methods for BE in KDE (or regression) prob-
lems try to estimate a pdf suitable for the whole space of
observations [14]. However, the goal of reconstruction tech-
niques is to obtain an estimate of a specific patch x0 given its
known context y0. Thus, a BE procedure to be employed in
signal recovery problems should be oriented to be as accurate
as possible at the point of interest.

In this paper we propose that the criterion for BE should
be the same as the one employed for the sparse linear predic-
tion method in [9], that is, the minimization of the square error
of Eq. (2). This minimization is now constrained to weights
of the form given by Eq. (7). Since these weights only depend
on the bandwidth H, we can consider that the function to be
minimized is εy = εy(H;y0).

In order to carry the minimization of εy versus the band-
widthH we could apply some sort of optimization algorithm.
Some preliminary experiments (with a steepest descent pro-
cedure) have revealed that this type of solution yields an un-
stable convergence and poor results due to the large number
of parameters in matrix H. Only in the case of considering
a scalar bandwidth (that is, H = h2I , I identity matrix), we
could obtain acceptable results. However, even in this case,
the steepest descent solution was not worthwhile either since
the minimization of εy = εy(h

2;y0) was even much more
time-consuming than an exhaustive search within the typical
range of variation of h2.

In order to overcome these problems, in this paper we pro-
pose a BE procedure as follows:

1. We will adopt the same assumption as in the plug-in BE
method described above based on the use of a scale fac-
tor β2 and a known structure FZZ , that is,H = β2FZZ .

2. Then, since FZZ is fixed, the weights are only functions
of β2 (that is, wj = wj(β

2;y0)), so that the square er-
ror to be minimized εy = εy(β

2;y0) also depends only
on the scale factor β2. Therefore, the corresponding
minimization is feasible by exhaustive search within
the typical range of variation of β2.

In order to carry out an efficient exhaustive search, we can
define a set of auxiliary weights as follows,

w̃j(y0) = exp
(
(y0 − yj)

tF−1Y Y (y0 − yj)
)
. (10)

These auxiliary weights do not depend on β2 and can be pre-
computed. Then, during the exhaustive search, the weights
(Eq.(7)) for every value of β2 can be efficiently obtained as,

wj(β
2;y0) =

(w̃j(y0))
1/β2∑M

i=1(w̃i(y0))1/β
2
. (11)

Finally, once the optimal value of β2 and its corresponding
weights have been obtained, the unknown patch x0 can be
estimated through Eqs. (6) and (9).

Several approaches for BE are adopted depending on the
selection of the structure matrix FZZ according to its level of
complexity [17]:

1. A scalar bandwidth FZZ = σ2
ZI , where σ2

Z is the vari-
ance of the available pixels (in set S). This approach
can be reduced to the algorithm described in [9] by
forcing β2σ2

Z = 10m.

2. A diagonal bandwidth FZZ = diag(CZZ)I .

3. A complete bandwidth FZZ = CZZ , as in [15].

Figure 2(a) shows examples of the error curve εy(β2;y0), ob-
tained during the minimization procedure, for all three ap-
proaches. Scalar and diagonal bandwidths produce almost
identical results since µ

(j)
X|Y (y0) = xj for both cases and the

diagonal of the correlation matrix CZZ tends to be uniform.
Simulations reveal that both configurations tend to smooth
high frequency textures (see Fig. 3(b)). On the other hand,
complete bandwidth matrices can recover fine textures with
high accuracy (see Fig.3(c)), although sometimes they show
an unexpected behaviour (see Fig. 2(b)). A possible ex-
planation is that the minimization of εy(β2;y0) is equiva-
lent to the maximization of the corresponding PSNR only if
FY Y = σ2

ZI . Moreover, the scalar (and diagonal) approach
is more robust against non-stationarity. In this case, an inac-
curate selection of the structure matrix FZZ = σ2

ZI can be
corrected by modifying β2, since H = β2σ2

ZI . This, how-
ever, is not possible for complete structure matrices. Thus,
in order to achieve a compromise between texture reconstruc-
tion and PSNR, we will also test a combination of scalar and
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SEC
Lena Goldhill Barbara Average

PSNR
MS-

PSNR
MS-

PSNR
MS-

PSNR
MS-

SSIM SSIM SSIM SSIM

[1] 30.42 96.56 31.27 95.65 26.85 94.87 28.57 95.04
[5] 31.96 97.25 30.24 94.53 27.39 96.20 29.46 95.71
[2] 32.17 97.64 31.12 95.71 27.99 96.00 29.57 95.99
[4] 32.15 97.44 30.91 95.52 29.91 97.04 30.22 96.39
[6] 30.85 97.08 30.40 95.21 28.03 95.72 29.23 95.69
[7] 32.70 97.96 31.66 96.35 28.41 97.37 30.28 96.74
[3] 32.82 97.65 31.54 95.62 29.66 97.07 30.35 96.08
[8] 32.72 97.80 31.78 96.14 30.84 97.64 30.50 96.56
[9] 32.55 97.97 31.72 96.43 30.80 98.01 30.55 96.98
KDS 32.22 98.02 31.43 96.40 30.84 98.11 30.51 97.00
MSS 32.84 98.11 32.03 96.67 31.33 98.25 31.20 97.27
MSD 32.87 98.11 32.02 96.66 31.35 98.26 31.21 97.28
MSC 32.69 98.00 32.14 96.77 31.77 98.35 31.24 97.28
MSX 33.00 98.18 32.17 96.84 32.22 98.55 31.43 97.40

Table 1. PSNR values (in dB) and MS-SSIM indices (scaled by
100) for test images reconstructed by several algorithms for block
dimensions 16 × 16. The best performances for each image are in
bold face.

complete bandwidths where the complete bandwidth matrix is
employed to compute the conditional means µ

(j)
X|Y (y0) (Eq.

(8)) and the scalar bandwidth for the weights wj (Eq. (7)).

5. EXPERIMENTAL RESULTS

In order to reflect the perceptual quality of the reconstruc-
tions, the multi-scale structural similarity (MS-SSIM) index
[18] is used for comparison along with the objective PSNR
measure. MS-SSIM is a weighted combination of SSIM
indices computed over different image resolutions. Thus,
coarse structures as well as fine textures are taken into ac-
count. SSIM index aims at approximating the human visual
system response looking for similarities in structure, contrast
and intensity [19].

The performance of our different proposals is tested on the
images of Lena (512×512), Goldhill (720×576), Foreman
(352×288), Barbara (512×512), Baboon (512×512), Clown
(512×512), Tire (205×232), Pirate (1024×1024), Boat
(512×512) and Peppers (384×512). We will use the frame-
work described in Section 2. For our MSE approaches, β2

is searched exhaustively within the range [0, 2] with steps of
0.01. First, we test the performance of the scalar bandwidth
using the classical KDE (KDS) of Section 4.1 and our MSE
approach (MSS) and compare them with our previous expo-
nential sparse linear prediction (SLP) algorithm [9], which
we will use as a reference (marked in Table 1). Table 1 shows
that KDS performs considerably worse than MSS and it
provides virtually no improvement over [9]. Thus, in the fol-
lowing, we focus on the MSE approach for scalar bandwidth
as well as diagonal (MSD) and complete (MSC) bandwidth
matrices. Moreover, we also use the combined scenario with
scalar and complete bandwidths (MSX ) as described at the
end of Section 4.2. We compare our proposals with other
state-of-the-art SEC techniques [1]-[9].

Table 1 shows the results in terms of PSNR and MS-SSIM
for the images of Lena, Goldhill and Barbara as well as the

(a) (b)

(c) (d)
Fig. 3. Subjective comparison for a fraction of Goldhill. (a) Re-
ceived data. (b) Reconstruction using scalar bandwidth (MSS). (c)
Reconstruction using complete bandwidth matrix (MSC ). (d) Re-
constructed by [8].

average performance over all ten tested images. The results
confirm our hypothesis that the KDS approach is not EC ori-
ented. On the other hand, all of our MSE proposals outper-
form the other techniques, including our previous exponen-
tial SLP. In addition, scalar and diagonal bandwidths produce
almost identical results. The complete bandwidth performs
better on average although is inferior in some particular cases
(e.g. Lena). Finally, the combination of the high quality re-
constructions produced by complete bandwidth with the good
behaviour of the scalar one produces the best result both on
subjective and objective levels. A subjective comparison is
shown in Fig.3.

Due to the efficient implementation of the exhaustive
search, carried out utilizing precomputed weights (Eqs. (10)
and (11)), the computational complexity is only moderately
increased with respect to SLP for all the MSE proposals.
This increment of complexity is reflected in the reconstruc-
tion quality which is improved in 0.9dB on average (for
MSX ). The KDS approach, on the other hand, requires up to
half an hour per macroblock and therefore is computationally
prohibitive for on-line applications.

6. CONCLUSIONS

We have proposed a framework for image EC based on a gen-
eralization of the Nadaraya-Watson estimator with an MSE-
based bandwidth estimation. We have shown that this MSE
criterion achieves a performance significantly better than that
of classical KDE with pdf matching. Using a simple scalar
bandwidth we achieve an average improvement over [9] of
0.7dB. This improvement is later incremented up to almost
1dB by combining the robustness of the scalar bandwidth with
the accurate reconstructions of fine textures produced by com-
plete bandwidth matrices. Ongoing work is focused on a more
accurate selection of the bandwidth matrix structure.
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