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ABSTRACT
We propose a new approach for describing the geometry informa-
tion of multiview image representations. Rather than transmitting
the raw geometry of the scene, under the form of depth informa-
tion, we build a graph that represents the connections between
corresponding pixels in different views in a multiview image set.
The graph starts with the reference image and recursively repre-
sents the next levels (i.e., images) by storing the new pixels (those
that cannot be derived from the previous image) and their con-
nections to the lower level. The decoder uses these connections to
recover the multiple images. In addition to being natural and more
easily controlled, the proposed graph-based representation can be
compressed more efficiently than depth images. This new repre-
sentation offers promising perspectives for effective and flexible
coding in multiview imaging.

Index Terms — Graph representation, multiview image cod-
ing, depth maps

1. INTRODUCTION

Systems for transmission of three-dimensional images may use
different types of geometrical information in the 3D data process-
ing representation. This geometrical information determines the
construction of the whole transmission chain, from capture to view
rendering. It is transmitted along with the texture data and used
for encoding techniques (to exploit correlation between pixels) or
to render virtual viewpoints [1] at the decoder. This geometrical
information has a coding cost that naturally depends on its level
of precision. An accurate geometry signal leads to significant im-
provements of the texture coding efficiency and rendering quality
but also has higher coding costs. In other words, systems have to
properly choose the amount of geometrical information that they
include in the data representation. This trade-off between accu-
racy and coding efficiency is usually solved when fixing the type
of data representation method [2].

The representation of 3D images has taken different forms in
the literature. First, some systems consider the classical image-
based representation, such as multiview images sets. For those
approaches, the correlation between the views is described with
disparity vectors [3] that indicate color similarities between blocks
of two neighboring images. The level of geometrical information
is typically low (block precision), which leads to suboptimal per-
formance when the views are too distant. Some more advanced
image-based representation methods handle this problem by con-
catenating a large number of images captured from close view-
points. This is the ray-space or the light field representation [4].
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In that case, the geometrical information is hidden in the concate-
nation of equidistant images. Whereas coding and interpolation
techniques can efficiently exploit this information, such a repre-
sentation requires very specific acquisition conditions, which are
not always practical. Then, other methods explicitly use geometri-
cal information such as depth images [5] that describe the distance
between the scene and the focal plane of every camera. Depth
images are very powerful tools that lead to many efficient tech-
niques for correlation extraction and view synthesis. This repre-
sentation, however, has one main limitation. The link between
coded depth quality and view rendering efficiency is not explicit.
More precisely, the distortion of the depth image does not describe
exactly the induced error in the virtual viewpoint generated with
this lossy depth. This problem has been addressed in the litera-
ture, mostly by introducing better metrics [6, 7], but the impact
of geometric approximations during the compression is still non-
straightforward and leads to unpredictable and undesirable effects.
Finally, there are approaches that use even more geometrical in-
formation such as mesh-based representations [8]. Although they
explore interesting ideas that merge computer vision and image
processing tools, they still remain inefficient compared to the pre-
viously mentioned approaches in terms of coding performance.

The choice of the proper level of geometry in the 3D data rep-
resentation is not totally clear from the literature. Since time-of-
flight sensors are getting more and more accurate [9], depth seems
to be the most popular and promising technique. Nonetheless,
this representation does not make explicit the relation between ge-
ometry precision and view synthesis accuracy. In this work, we
propose a more natural geometry information that is of moderate
size, but leads to effective view reconstruction algorithms. Af-
ter observing that the knowledge of the scene geometry leads to
connections between pixels of different viewpoints, we propose to
directly represent these links with a graph. The graph contains all
the geometrical information needed for multiview image recon-
struction at the decoder side. The advantage of such an approach
is that it works directly with the inter-pixel connections and offers
a better control of the compression artifacts. We have compared
this approach with depth map representations in terms of compres-
sion performance with promising results (rate savings can achieve
33%). The proposed graph-based representation is also flexible
and enables rate scaling, as less information has to be sent when
fewer views need to be generated at the receiver.

2. GRAPH-BASED GEOMETRY REPRESENTATION

2.1. Scene capture assumptions

Let us consider a scene captured by N cameras with the same res-
olution and focal length f . The n-th image is denoted by In, with
1 ≤ n ≤ N , where In(r, c) is the pixel at row r and column
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Figure 1. Type of artifacts happening when depth-based image warping:
pixels can be a) appearing, b) disoccluded, c) occluded and d) disappear-
ing. Green plain line is an arbitrary row in the reference image and the
dashed line is the corresponding one in target image.

c. We only consider translation between cameras, and we assume
that the views are rectified. In other words, the geometrical cor-
relation between the views In is only horizontal. We assume that
accurate depth images Zn for every viewpoints In are available at
the encoder. From the rectification assumption, the link between
depth z and disparity d between two camera images is given by
d = fδ

z
, where δ is the distance between the two cameras. In the

following, we mainly deal with disparity values, which we com-
pute from the depth mapsZn and the camera parameters. Our goal
is to design the best multiview representation of these N camera
images. In the following, the synthesized images are the N − 1
images generated using the reference image and additional struc-
ture and color information introduced below. We do not consider
virtual view synthesis in this paper.

2.2. Geometrical structure representation

Before introducing our graph representation in detail, we analyze
the effect of camera translation on the image content. Let us con-
sider two images In and In+1 captured by cameras that are sepa-
rated by a distance δ. Since we consider only full pixel displace-
ments, the geometrical correlation between these two images takes
the form of In+1(r, c) = In(r, c+d), where d is a disparity value
(derived from Zn, which is supposed to be available) and In is
arbitrarily chosen as the reference image. The pixels for which
this relation holds belong to the regions in image In+1 that can be
directly associated to regions in In. They correspond to the ele-
ments of the scene that are visible in both images. The elements
that are visible only from one viewpoint are usually designed un-
der the general name of occlusions, even if their appearance is
not only due to object occlusions. Specifically, we can catego-
rize these missing pixels into four different types as illustrated in
Fig. 1. Because of camera translation, a new part of the scene
appears in the camera. It usually comes from the right or left (de-
pending on translation direction) and these pixels are not related
to object occlusions. They are called appearing pixels (a). During
camera translation, foreground objects move faster than the back-
ground. As a result, some background pixels may appear behind
objects and are thus called disoccluded pixels (b). Conversely,
some background pixels may become hidden by a foreground ob-
ject. These are called the occluded pixels (c). While some pixels
appear in the camera frame because of the viewpoint translation
some pixels disappear, disappearing pixels (d), from the frame.

If we consider a row of the target image in Fig. 1 (dashed
green horizontal line), we notice that it is made of these different
types of pixels. More precisely, if we start from the left border, the
row first contains several appearing pixels, and then some pixels
of the reference image. Then, the row presents some disoccluded
pixels before coming back to reference image pixels. After that,

the row meets occluded pixels that correspond to a jump in the
reference image. The rest of the row refers to the reference image
until the disappearing pixels. If we now assume that we want to
describe pixels in this target row referring to a maximum number
of elements from the corresponding row in the reference frame
(plain green horizontal line), we clearly see that it could be done
by navigating between the reference image and the “new” pixels
of the target image. This navigation can be guided by connections.
The graph that we propose to construct is made of these connec-
tions. This graph is derived from depth information and is sent
instead of depth to the decoder. The number of connections de-
pends linearly on the number of foreground objects in the image.
Similarly, the size of these connections evolves linearly with the
separation between cameras and object disparities. A more formal
graph construction method is given in the next section.

2.3. Graph construction

The proposed graph representation intends to avoid redundancies
in the color description (i.e., only “new” pixels are described) and
additionnally to present more intuitive geometry information with
links between corresponding pixels in different views. We show in
Fig. 2 a simple graph construction example, with 5 levels (1 refer-
ence and 4 synthesized images). More generally, a graph with N
levels describes 1 reference image and N − 1 synthesized ones.
Its construction requires the depth maps Zn, 1 ≤ n ≤ N − 1.
Since the object displacement is only horizontal, we consider in-
dependent graph construction for each row of the images (however
coding can eventually be done across lines). Such a graph is made
of two components, which are described by two matrices of size
L ×W , where L is the number of levels (i.e., the number of im-
ages encoded by the graph) and W is the image width. These two
matrices are the color values Γr = [γri,j ]i≤L,j≤W and the con-
nections Λr = [λri,j ]i≤L,j≤W and represent color and geometry
information for all pixels of all images. They are both initialized
to 0, which means “no connection” and “no color value”. For the
sake of clarity, let us first describe in detail a 2-level graph con-
struction of an arbitrary row r by considering only one synthesized
frame I2, one reference frame I1 and its associated depth map Z1.
Refer to Fig. 2. The first level corresponds to the reference level,
and thus γr1,j = I1(r, j) for all j ≤ W . Then, the connections
always indicate the links between the current level and the next
one. Hence, since we are considering only two levels, we have
λr2,j = 0 for all j ≤W in our example.

Then, the λr1,j connections and γr2,j color values are con-
structed under the following principles. The pixels intensities are
represented in the level where they appear first. For this 2-level
example, it means that the second level only contains pixels that
were not present in the reference image. The connexions λr1,j sim-
ply consists in linking these “new” pixels to the position of their
neighbor in the previous level. We describe now more precisely
how each of the pixel types in Fig. 1 is handled in our graph-based
representation. First, the appearing pixels are simply given in the
corresponding γr2,j values, without connectivity information (they
are implicitly attached to the side of the image). In the example
of Fig. 2, we see that the dark blue appearing pixel (a) is stored in
level 2 at its position in I2, i.e., in γr2,1. For the disoccluded pixels,
since they do not appear in the reference image, their color value
is stored in the color matrix [γr2,j ], where j correspond to their
positions in I2. In Fig. 2, the disoccluded pixels (b) are stored in
γr2,3 and γr2,4. Additionally, at reference level and at the position
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Figure 2. Toy graph construction example: blue texture background has a disparity of 1 at each level and red rectangle foreground a disparity of 3 for
each level. Graph contains all different types of pixels: a) appearing, b) disoccluded, c) occluded and d) disappearing.
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Figure 3. Reconstruction of the level 2 with the toy example of Fig. 2. Green arrows indicate the graph exploration order for view reconstruction.

c of the last pixel before the foreground object on row r, we store
the value λr1,c = d + 1, where d is the disparity vector associ-
ated to depth value Z1(r, c). This connection value links the last
background pixel of the reference image to the ones in the target
level that are disoccluded. For example, in Fig. 2, the foreground
object is red. In level 1, the last pixel before this foreground object
is at position 1 (light blue pixel). The graph thus links this pixel
to the first disoccluded pixel (b) of level 2. The disparity d of the
background of example in Fig. 2 is equal to 1, so the connection
value stored is equal to 2. In other words, we have λr1,1 = 2.

As mentioned in the previous section, the occluded pixels (c)
correspond to a jump in the reference image. This jump is stored
in the connectivity vector at the following positions: i) the last
pixel of the foreground object (connection equal to the foreground
disparity) and ii) the last pixel of the corresponding occluded re-
gion (connection equal to the background disparity). In Fig. 2,
the last pixel of the foreground object i) is at position 4 in level
1. Thus, we have λr1,4 = 3, since the red foreground object has a
disparity of 3. Secondly, the last pixel of the occluded region ii)
is at position 6 in level 1. Since the background disparity is 1, we
have λr1,6 = 1. We notice that the two connections meet in c = 7
in level 2, which corresponds to the position of the last foreground
pixel in level 2. This time, since no new pixel is contained in the
target frame, we do not store any value in the color vector. Finally,
the disappearing pixels (d) are simply indicated by a connection
value at the last pixel before them. The connection value is equal
to the background disparity. In Fig. 2, the first disappearing pixel
is at position 19, thus λr1,18 = 1.

With this graph construction method and looking at the exam-
ple of Fig. 2, we see that the graph representation is sparse and
avoids all redundancy in the color value description since the pix-
els stored in level 2 of Γr are only those that are not present in the
reference image. Another important advantage of this graph repre-
sentation consists in the multi-level structure. The graph construc-
tion is done by recurrence (meaning that each level refers to the
lower one), and we see in Fig. 2 that interesting properties appear
in the graph structure. The connections in one level correspond

to connections in other level and can be seen as chains of con-
nections. Thus, intuitively, a reconstruction algorithm only needs
to go through these connection chains to synthesize the different
multiview images, as discussed below.

2.4. View synthesis at the decoder

The graph information can be used directly for view synthesis at
decoder. Assume that the two graph components Γr and Λr are
available at the decoder for every row r. The reconstruction of
a certain level requires the color values and the connections of
all lower levels. The filling of the current level color values is
performed by navigating in the graph between the different levels.
This navigation starts from the border of the image at the level that
needs to be constructed, then follows the connections and refers to
the lower levels when no color information is available at current
level. We show in Fig. 3 an example of a view synthesis for the
image of level 2, based on the graph of Fig. 2. In the following,
pixel numbering is done with respect to the column index of I2, as
done in Fig. 2. The reconstruction starts with the appearing pixel
1 at level 2 . Then, it moves to the reference level and fills pixel
color until meeting a non-zero connection. In the case of Fig. 3,
the first connection is after pixel 2 and links it to pixel 3 and 4 in
level 2. After filling all the disoccluded pixels, the reconstruction
goes back to the reference level and fills color information (5, 6
and 7) until the next non-zero connection (at pixel 7). The con-
nection in 7 indicates an occluded region. Hence, the reconstruc-
tion algorithms jumps in the reference frame and restart the filling
(pixel 8 to 19) until the next non-zero connection (disappearing
pixel). The reconstruction of the other levels is done recursively.
We see that the reconstruction process is very simple, fluid and
controllable (contrarily to depth-based representations).

3. EXPERIMENTS

In order to evaluate our proposed approach, we compare its loss-
less compression rate to that required for encoding a depth map.
As we can observe in the example of Fig. 2, the matrix Λr is
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Figure 4. Example of two images (from view 1 (a) and 4 (b)) and the associated graph-based representation of row 20 with 7 levels (c)
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Figure 5. “Structure rate” as a function of the
number Nf of foreground objects (averaged
over different number of levels 1 ≤ Nl ≤ 6)
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Figure 7. “Structure rate” comparison for nat-
ural images (sawtooth) in function of the num-
ber of views Nl.

sparse. Hence, it can be coded with a small number of bits. For
that purpose, we do not code directly Λr and rather consider a
smaller matrix Φ of size M × 4, where M is the number of non-
zero elements in all the Λr with r < H (H is the height of the
image). The matrix Φ stores all the meaningful connections and
it is organized as follows. The first column of Φ contains this row
indices r. The second column contains the column indices c, the
third column contains the level indices, and finally, the fourth col-
umn contains the connection values. Then, we simply consider
an arithmetic coding of every column, with, for some of them,
a differential operation as preprocessing, in order to decrease the
entropy. Alternatively, the depth maps are processed through a dif-
ferential operator and then compressed with an arithmetic coder.

We first consider synthetic images made of one background
and Nf foregrounds objects (all parallel with the camera plane).
Every foreground object is a square and has a different depth.
We synthesize Nl viewpoints of equidistant cameras. The images
of this database are generated randomly. In other words, given
a number Nf of foreground objects, the algorithm places them
randomly at a random depth value. In order to avoid particular
cases, we estimate each rate value presented below by averaging
the compression rate of 10 random images as explained above.
Fig. 4 shows two images of such synthetic images. The corre-
sponding graph is also shown in Fig. 4(c). We see that, even if the
number of connection increases with the number of foreground
objects, the graph still remains sparse. We verify this statement
by calculating the structure rate, i.e., the depth and graph coding
cost, for different number of foreground objects (the results are
averaged over a number of levels Nl varying from 1 to 6). Re-
sults are shown in Fig. 5. Although the structure rate increases
with the number of foregrounds, the graph-based representation is
compressed more efficiently than the depth images.

The advantage of depth-based representation relies in the fact
that a single depth image is able to generate different viewpoints
(as soon as the camera positions are known). In the contrary,
the proposed graph-based representation stores more information

when the number of level increases. This is why we compare the
two approaches performance for different number of levels. Re-
sults are shown in Fig. 6. We see that the graph-based representa-
tion requires much less rate than depth maps until Nl = 4. After
that, the graph structure becomes heavier. However, the 6th view-
point is distant from the reference image, and depth-based rep-
resentation would require additional data (such as another depth
image) to estimate the object displacement in the occlusions, con-
trary to our graph-based representation, which contains all the in-
formation needed for viewpoint synthesis at the receiver. We also
test our method on a natural dataset from Middlebury University,
sawtooth [10], made of 5 rectified images. We show our results
in Fig. 7 and we observe that similar promising performance are
obtained.

We see that the concatenation of the different levels is made
without redundancies (i.e., no pixel is represented several times)
nor constraints on camera position (i.e., in contrary to light field
methods, the graph-based representation does not impose close
equidistant cameras). Finally, note that we could reduce the num-
ber of bits by using lossy compression. Depth compression has
however to be performed carefully in order to control the qual-
ity of view synthesis. Our ongoing work [11] shows that GBR
further leads to better lossy coding performance than depth-based
schemes, in particular because the graph better controls the errors
induced by compression.

4. CONCLUSION

In this paper, we propose a new form of geometry representa-
tion, which consists in coding the pixel connections in multiview
images with a graph. First, it brings a more natural and con-
trollable geometry structure than classical depth-based represen-
tations, which is appropriate for interactive navigation systems.
Secondly, the sparse characteristics of the proposed approach lead
to very efficient compressibility of this geometrical information.
Future work will focus on the lossy compression of this promis-
ing representation.
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