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ABSTRACT

We introduce a new method, called Tree K-SVD, to learn
a tree-structured dictionary for sparse representations, as well
as a new adaptive sparse coding method, in a context of im-
age compression. Each dictionary at a level in the tree is
learned from residuals from the previous level with the K-
SVD method. The tree-structured dictionary allows efficient
search of the atoms along the tree as well as efficient coding of
their indices. Besides, it is scalable in the sense that it can be
used, once learned, for several sparsity constraints. We show
experimentally on face images that, for a high sparsity, Tree
K-SVD offers better rate-distortion performances than state-
of-the-art "flat” dictionaries learned by K-SVD or Sparse K-
SVD, or than the predetermined overcomplete DCT dictio-
nary. We also show that our adaptive sparse coding method,
used on a tree-structured dictionary to adapt the sparsity per
level, improves the quality of reconstruction.

Index Terms— Dictionary learning, tree-structured dic-
tionary, sparse coding, sparse representations, image coding.

1. INTRODUCTION

Sparse representation of a signal consists in representing a
signal y € R™ as a linear combination of columns, known as
atoms, from a dictionary matrix. The dictionary D € R"* %
is generally overcomplete and contains K atoms. The ap-
proximation of the signal can thus be written y ~ Dx and
is sparse because a small number of atoms of D are used in
the representation, meaning that the vector x has only a few
non-zero coefficients.

The choice of the dictionary is important for the repre-
sentation. A predetermined transform matrix can be chosen.
Another option is to learn the dictionary from training signals
to get a well adapted dictionary to the given set of training
data. As shown in [1], learned dictionaries have the potential
to outperform the predetermined ones.

Sparse representations and dictionary learning are com-
monly used for denoising [2, 3]. The application considered
in this paper is image compression. This case has already
been treated in [1, 4, 5], however with different dictionary
construction methods, and different coding algorithms. In
that context, for each signal y, a sparse vector x has to be

This work was supported by EADS Astrium.

978-1-4799-0356-6/13/$31.00 ©2013 IEEE

1320

coded and transmitted, which is equivalent to send a few pairs
of atom index and coefficient value.

Recently, tree-structured dictionaries appeared [6, 7, 5].
In [6], the tree is considered as a unique dictionary, each node
corresponding to an atom, and the atoms used for a signal
representation are selected among a branch of the tree. The
learning algorithm proceeds in two steps which are iterated:
sparse coding using proximal methods and update of the en-
tire dictionary. Even if it gives good results for denoising,
the fact to consider the tree as a single dictionary makes it,
in its current state, not well adapted to efficiently code the
indices of the atoms when the dictionary becomes large. An-
other kind of tree-structured dictionary, more adapted to the
coding issue because structured as a tree of dictionaries, is
TSITD (Tree-Structured Iteration-Tuned Dictionary) [5]. It
constructs a tree-structured dictionary adapted to the itera-
tive nature of greedy algorithms, such as the matching pursuit
[8,9, 10]. The concept of using a different dictionary for each
iteration of the pursuit algorithm has been first expressed with
Basic ITD (BITD) [7] structured in only one branch, each dic-
tionary being learned from the residuals of the previous level
with the K-means algorithm.

This paper first describes a new tree-structured dictionary
learning method called Tree K-SVD. Inspired from ITD and
TSITD, each dictionary at a given level is learned from a sub-
set of residuals of the previous level using the K-SVD algo-
rithm. The tree structure enables the learning of more atoms
than in a "flat” dictionary, while keeping the coding cost of
the index-coefficient pairs similar. Tests are conducted on fa-
cial images, as in [1, 4, 5], compressed for multiple rates in
a compress scheme. Thus, for a given bit rate, Tree K-SVD
is shown to outperform flat” dictionaries (K-SVD, Sparse K-
SVD and the predetermined (over)complete DCT dictionary)
in terms of quality of reconstruction for a high sparsity, i.e.
when the number of atoms used in the representation of a
vector is low. Setting the sparsity constraint to only a few
atoms limits the number of levels, and so of atoms, in the
tree-structured dictionary. The paper then describes an adap-
tive sparse coding method applied on the tree-structured dic-
tionary to adapt the sparsity per level, i.e. to allow selecting
more than 1 atom per level. It is shown to improve the quality
of reconstruction.

In Section 2, we describe the Tree K-SVD dictionary
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structure, the learning algorithm and its usage for sparse rep-
resentations. In Section 3, we present our new adaptive sparse
coding method. In Section 4, we then compare Tree K-SVD
to state-of-the-art methods learning flat” or tree-structured
dictionaries and to a predetermined dictionary. We also show
the performances of the adaptive sparse coding. Finally, in
Section 5, we conclude and discuss several future works.

2. A TREE-STRUCTURED DICTIONARY
LEARNING METHOD

2.1. The tree structure

Tree K-SVD is a method learning a tree-structured dictionary
from a training set of signals. It is then used to approximate
a signal as a linear combination of atoms in the dictionary.
The tree-structured dictionary is composed of L levels of 1,
K, K?, ..., K~ dictionaries of K atoms (Fig.1).

An advantage of the Tree K-SVD method is its scalability
in sparsity. A “flat” dictionary learned with K-SVD or Sparse
K-SVD is learned for a specific sparsity constraint, that is
a number of atoms to use in the approximation of a signal.
Then, the dictionary is usually used to approximate signals
with this sparsity constraint, in order to make the approxima-
tion more efficient. In contrast, a tree-structured dictionary
is learned with the Tree K-SVD method for a given number
of levels, and such a dictionary with L levels can be used to
approximate signals with a number of atoms from 1 to L.

dataY=R;
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K dictionaries 21 2 2j 2K

Fig. 1: The Tree K-SVD dictionary structure.

2.2. The dictionary learning algorithm

A tree-structured dictionary is learned with a top-down ap-
proach: each dictionary in the tree is learned on residuals of
the previous level with K-SVD [1], a state-of-the-art dictio-
nary learning method. The sparsity constraint of K-SVD is
set to 1 as only 1 atom can be selected per dictionary in our
method. Of course, other dictionary learning methods than
K-SVD could be used to learn each dictionary in the tree.

At the first level, the only dictionary D; is learned with K-
SVD from the training data Y, and with a sparsity constraint
of 1 atom. Then OMP [9] is applied with a sparsity constraint
of 1 to approximate each training signal in Y with only 1
atom from D;. Note that we use OMP for its simplicity and
fast execution but another pursuit algorithm could be used.
Residuals (R2) are computed and then split in K residuals
(R2,1, ..., X2 i) to form one set of residuals per column of
D;. Each vector of Ry is putin Roy, k € [1,..., K], if it
is a residual of the approximation of a vector in Y with the
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column k in D;. Thus, the residuals of the column k, Ry,
correspond to the residuals of the data vectors which are the
most correlated to this column k in the dictionary D;. At
the second level, a dictionary is learned from each residuals
set Ry, with K-SVD. That way, the second level counts K
dictionaries. Each residuals set Ry j is then approximated
with 1 atom from the corresponding dictionary D j,, with a
non-zero coefficient, to get K sets of residuals per dictionary
at the second level. So there are K2 sets of residuals at the
third level, used to learn the K2 dictionaries of the third level.
And so on. With this method, the dictionaries at a level are
adapted to the residuals of the previous level.

Some dictionaries in the tree can be empty if the corre-
sponding atom at the previous level is not used in any approx-
imation of the previous residuals. Some can have a number
of atoms inferior to K if the number of residual vectors used
for the learning of these dictionaries is inferior to K. In that
case, the residual vectors are simply copied, with normaliza-
tion, and the learning of the branch is stopped.

2.3. Usage for sparse representations

Once a tree-structured dictionary of L levels has been learned
from learning data, this dictionary can be used to approximate
a vector by a linear combination of [ atoms in the dictionary,
with [ < L. The sparsity constraint [ indicates how deep to go
through the tree to select the best atoms. Indeed, 1 atom is se-
lected at each level of the tree, starting with the first level. To
select the atoms and compute the corresponding coefficients,
we use the OMP algorithm as for the learning.

To represent a vector y as a linear combination of 2 atoms
for example, with the tree-structured dictionary on Fig.1, first
OMP is applied to y and the dictionary D; with a sparsity
constraint of 1 atom. OMP gives the most correlated atom to
y in Dy, in the example a1, and the associated coefficient ;.
Residuals » = y — ajaq are computed. As the atom chosen
at the first level is a1, at the column j in D1, we necessarily
search for the second atom at the second level in the j** dic-
tionary D; ;. Then, OMP is applied on the residuals r and
the dictionary D5 ; to find the most correlated atom to 7 in
D> ;, az, and the associated coefficient ao. The residuals are
updated to r = r — aoao. Finally, the vector y can be written
Yy = ai1aq + asas + r, with r the residuals.

The tree structure offers a good property to code the in-
dices of the atoms a; used in the approximation of a vector.
Indeed, only the indices in small dictionaries in the tree have
to be coded and not which dictionary to use at each level as
the choice of an atom at a level forces the choice of the dic-
tionary at the next level.

The tree structure offers also efficient sparse coding even
if the dictionary is large. Indeed, OMP is applied on the small
dictionaries in the tree and not on the entire tree. For each vec-
tor to approximate, a single branch in the tree is used. Thus,
it is similar in terms of complexity to realize sparse coding
on a tree of dictionaries of K atoms than on a single "flat”
dictionary of K atoms.



3. ADAPTIVE SPARSE CODING PER LEVEL

We introduce in this paper a new sparse coding method to
search for atoms in tree-structured dictionaries. The sparse
coding used in the ITD methods [7, 5] and that we presented
in the previous section selects 1 atom per level of the tree.
Thus, the maximum number of atoms that can be used in the
representation is the number of levels in the tree. But to go
too deep in the tree to select more atoms makes the number of
dictionaries in the tree explode. The adaptive sparse coding
allows selecting more than 1 atom per level and thus using
more atoms in the representation with the same dictionary.
At each level, once a first atom has been selected, a choice
is made between staying at the same level in the same dic-
tionary to select another atom or going to the next level in
the tree. For that, the 2 most correlated atoms to the current
residual vector are found, one at the same level and the other
one at the next level. The atom minimizing the energy of the
residuals is kept in the representation. That way, the sparsity
per level is automatically adapted to decrease the distortion.

4. RESULTS
4.1. Experimental setup

We use the Yale Face Database [11], containing 165 grayscale
images in GIF format of 15 individuals. There are 11 im-
ages per subject, one per different facial expression or con-
figuration. 14 individuals, so 154 images, are used as train-
ing data to learn the dictionary. The remaining 11 images
from the 15th individual are used as a test set. The train-
ing images, with a size of 320x243 pixels, have been slightly
cropped to the size of 320x240 pixels to cut the images in
non-overlapping 8x8 pixels blocks. Each block is put as a
vector to get the 184800 training vectors. The test images
have been cropped to a size of 160x208 pixels to focus on the
face. Thus, there are 5720 test vectors.

The reference dictionaries are learned in 50 iterations,
as the dictionaries in TSITD and BITD. For Tree K-SVD,
the first level is learned in 50 iterations and 10 iterations are
enough for the next levels. K-SVD is initialized with the
DCT dictionary, as the base dictionary of Sparse K-SVD,
whose sparse dictionary is initialized by the identity matrix.
Each dictionary in Tree K-SVD is initialized with the DCT
dictionary also. For TSITD and BITD, the DCT dictionary or
learning vectors are used for the initialization, according to
the number of learning vectors.

Note that in the tests, for ”flat” dictionaries, the sparsity
constraint (maximum number of atoms) used to approximate
a test vector is the same as the one used to learn the dictionary.

4.2. Comparison with ”flat” dictionaries

In order to compare the methods, we look at the influence of
sparsity on the quality of representation. We first learn a dic-
tionary on the training data for each sparsity constraint value
between 1 and 4 atoms (to limit the number of levels in the
tree), and then use the dictionaries to approximate the test
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Fig. 2: Sparse representations with Tree K-SVD and refer-
ence dictionaries (K=64) (AdSC = with Adaptive Sparse Cod-

ing).

data with the same sparsity constraint value. To approximate
the test data, OMP is used to select the atoms and compute
the non-zero coefficients. For Tree K-SVD, only one tree-
strcutured dictionary of four levels is learned. Tree K-SVD
is compared to the K-SVD dictionary [1], the Sparse K-SVD
dictionary[3] with an atom sparsity set to 32, and also to a pre-
determined dictionary, the (over)complete DCT basis. The K-
SVD dictionary and the Sparse K-SVD dictionary are learned
using the software made available by the authors [12, 13].

In the context of compression, we do not intend to com-
pare the methods with the same total number of atoms, but
with an equivalent coding cost of the indices. So for the “flat”
dictionaries, K is the total number of atoms, whereas for Tree
K-SVD, TSITD and BITD, it is the number of atoms per dic-
tionary in the tree.

Tree K-SVD outperforms the state-of-the-art "flat” dictio-
nary learning methods (Fig.2) when the sparsity constraint is
at least 2 atoms and remains limited. Indeed, with a sparsity
constraint of 1 atom, only the first level in the tree is used
and Tree K-SVD is equivalent to a “flat” dictionary learned
with K-SVD with a sparsity constraint set to 1 atom. For dic-
tionaries of 64 atoms (K=64) (Fig.2), Tree K-SVD offers a
better quality of reconstruction for a sparsity constraint of 2
or 3 atoms. But the fourth atom in the approximation does
not increase the quality of reconstruction as much as the pre-
vious atoms. Deep in the tree, the residuals become too weak
and the dictionaries too adapted to the training data. Besides,
many dictionaries are incomplete and so less efficient. Regu-
larly in the approximation, only 3 atoms are selected instead
of 4 if an empty dictionary is found at the fourth level, hence
an average of about 3.5 atoms instead of 4 atoms used in the
approximation (Fig.2). The same behaviour can be seen with
dictionaries of 256 atoms. Moreover, the learned dictionaries,
adapted to the training data, give much better results than the
predetermined DCT one.
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4.3. Comparison between tree-structured dictionaries
When we compare Tree K-SVD with TSITD (Fig.2), we ob-
serve close results. The gap for a sparsity constraint of 1 atom
is mainly due to the use of a function in K-SVD to replace the
less useful atoms at the end of each iteration of the algorithm,
that is inefficient for this sparsity constraint. Then when 3
or 4 atoms are used in the representation, Tree K-SVD takes
the advantage on TSITD. It can be explained by a strategy
used in TSITD to learn dictionaries in the tree. Indeed, in
the case where the number of training vectors is too low to
learn a dictionary of K atoms, we decide in Tree K-SVD to
copy these training vectors in the dictionary. Whereas TSITD
learns in that case a smaller dictionary than Tree K-SVD.
These smaller dictionaries in the tree, when that case hap-
pens, explain the lower quality of reconstruction of TSITD
when 3 or 4 atoms are used in the approximation. Tree K-
SVD gives also better results than BITD for 2 or 3 atoms. But
BITD, structured in one branch of dictionaries, is then better
for more than 3 atoms (Fig.2).

Tree K-SVD with the adaptive sparse coding (AdSC)
clearly outperforms the original Tree K-SVD, TSITD and
BITD for a high sparsity and when more than 2 atoms are
used in the representation (Fig.2). Thus, the possibility to
select more than 1 atom per level increases the performances.
It also enables using more atoms in the representation, with
the same dictionary, to reach a better quality if necessary.

4.4. Sparse representations for compression
In order to use sparse representations for compression, [ (spar-
sity constraint) coefficients and indices of atoms are coded
for each test vector. The coefficients are first quantized with
a uniform scalar quantizer with a dead zone. The quantized
coefficients are put in a sequence, an End OF Block code sep-
arating the coefficients of each test vector. The sequence is
then encoded using a Huffman entropy coder, similarly to the
JPEG coder and with the same Huffman code table. Finally,
the rate of the indices is added. For each index, the rate is
R = logs(K), with K the number of atoms per dictionary.
By sweeping through various values of the quantization
step, we obtain the values of the R-D curves for the Tree K-
SVD method and the state-of-the-art ones. The Tree K-SVD
dictionary outperforms the “flat” dictionaries when a small
number of atoms is used in the representation, for complete
(Fig.3), and overcomplete (Fig.4) dictionaries. The rate of
Tree K-SVD with adaptive sparse coding (AdSC) is penal-
ized by a flag in the bitstream of 1 bit per atom selected in
the representation indicating if the next atom is selected at the
same level or at the next one. However, this adaptive sparse
coding method allows reaching a better quality (Fig.3) but is
effective when more than 2 atoms are selected in the repre-
sentation. That is why Tree K-SVD and Tree K-SVD AdSC
reach about the same PSNR on Fig.4. The rate of TSITD is
a bit lower but this method does not reach the same quality
of reconstruction than Tree K-SVD and Tree K-SVD AdSC,
especially for small dictionaries (Fig.3 and 4).
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Fig. 3: Rate-distortion curves for Tree K-SVD and reference
dictionaries (K=64). The sparsity constraint is set to 3, mean-
ing that each test signal is approximated by a maximum of 3
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Fig. 4. Rate-distortion curves for Tree K-SVD and reference
dictionaries (K=256). The sparsity constraint is set to 2.

5. CONCLUSION

In this paper, we presented a new method to learn a tree-
structured dictionary. We have shown that Tree K-SVD out-
performs “flat” dictionaries learned by the methods K-SVD
or Sparse K-SVD and the predetermined (over)complete DCT
dictionary, when a small number of atoms is used in the rep-
resentation. Thanks to the tree-structure, the search for the
atoms and the coding of their indices is efficient. Finally, it
is scalable in the sense that it can be used, after the learning,
for several sparsity constraints. We have also shown that us-
ing the adaptive sparse coding, to select more than 1 atom per
level, increases the performances.

The tree-structured dictionary learned comprises a large
total number of atoms. But it could be possible to prune the
tree by stopping the learning in a branch if it is considered that
going deeper in the tree does not improve the quality enough.
For each test vector, we could also imagine to select a variable
number of atoms, that is to go more or less deep in the tree,
according to the required quality and the available rate. Tests
have been here realized on face images but will be applied in
the future to other types of images, like satellite images.
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