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ABSTRACT

In many scientific, medical and defense applications of im-
age/video compression, an `∞ error bound is required. How-
ever, pure `∞-optimized image coding, colloquially known
as near-lossless image coding, is prone to structured errors
such as contours and speckles if the bit rate is not sufficiently
high; moreover, previous `∞-based image coding methods
suffer from poor rate control. In contrast, the `2 error metric
aims for average fidelity and hence preserves the subtlety of
smooth waveforms better than the `∞ error metric and it of-
fers fine granularity in rate control; but pure `2-based image
coding methods (e.g., JPEG 2000) cannot bound individual
errors as the `∞-based methods can. This paper presents a
new compression approach to retain the benefits and circum-
vent the pitfalls of the two error metrics.

1. INTRODUCTION

For many important applications of image compression in
science, medicine, space exploration, precision engineering,
etc., high fidelity of image reconstruction is required. The
ideal solution is lossless compression, but this demands a rel-
atively high bit budget. A practical alternative is `∞-constrained
image coding.

A straightforward method of `∞-constrained image com-
pression is a cascade of uniform scalar quantization of all
pixel values followed by lossless coding of the pre-quantized
image [1, 2]. But a far more efficient near-lossless coding ap-
proach is a closed loop of a causal DPCM predictor and uni-
form scalar quantizer of prediction residuals [3, 4, 5]. Both
the techniques of [3] and [4] are based on the DPCM method.
In [3] a uniform (or a nearly uniform) scalar quantizer is
used to quantize the prediction errors, while in [4], a mech-
anism to minimize the entropy of the sequence of quantized
prediction residues is incorporated. Finally, `∞-constrained
(or near-lossless) CALIC [5] is a variant of lossless CALIC
[6] and it uses a uniform scalar quantizer for the residual
errors in the prediction loop. Among the aforementioned
`∞-constrained image coders, near-lossless CALIC achieves
the highest compression performance when τ ≤ 3 [5]. Fur-
ther enhancements of near-lossless CALIC were proposed in

[7, 8], which led to superior performance in terms of bit rate
and/or `2 distortion, but at the expense of increased compu-
tational complexity.

The design goal of existing `∞-constrained image coders
is to achieve the lowest bit rate for each given error bound τ ,
neglecting other operational issues. One side effect is that
the number of achievable bit rates is small, only equal to the
number of possible values of τ . Such a coarse rate granular-
ity makes it very difficult to finely adjust the bit rate versus
the distortion bound. For test image in Fig. 4 as an exam-
ple, the bit rates achievable by near-lossless CALIC for τ =
0, 1, · · · , 8, are 3.53, 2.13, 1.57, 1.27, 1.07, 0.94, 0.82, 0.73,
0.67, respectively. Notice the big gaps between consecutive
bit rates. In order to improve the reconstruction quality at
τ = 2, the only option is to choose τ = 1, but this incurs
a big rate increment of 0.56 bpp (or 35.67%). The resulting
next higher rate will be wasteful if the reconstruction quality
at τ = 2 is just slightly lower than required.

Moreover, the suitability of pure `∞ distortion metric
in preserving image quality may also be put into question.
In particular, `∞-constrained image coders may introduce
structured artifacts in smooth regions. Fig. 1 compares im-
ages coded by an `∞-based compression method (near-lossless
CALIC with τ = 4) and an `2-based compression method
(JPEG 2000) when the bit rates are the same. As shown
in Fig. 1c, the `∞-constrained CALIC produces contours
in smooth shade region. Although the `2-based JPEG 2000
does not produce contour artifacts, it removes the small fea-
ture on the smooth surface as identified in Fig. 1b. In fact,
the tendency of `2-based image coders to distort or even re-
move small features, which are statistical outliers, motivated
the research on `∞-based image coders. In some important
applications, tiny objects (e.g., lesions in medical images or
small boats in satellite images) carry great semantic signifi-
cance even though they are tiny minority statistically speak-
ing.

To summarize the above observations, the `2 distortion
metric, being an average fidelity measure, preserves the sub-
tle smooth image waveforms better; on the other hand, the
`∞ distortion metric, aiming for best minmax approxima-
tion, preserves isolated small image features better. The other
major difference between the `2 and `∞ code design crite-
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(a) Original image (b) JPEG 2000 (c) Near-lossless CALIC (d) Proposed

Fig. 1. Comparison using a computer-generated test image between (a) Original image / Lossless image coding (Lossless
CALIC at rate 1.27 bpp); (b) `2-based image coding (JPEG 2000 at rate 0.38 bpp, PSNR 42.08dB, `∞ error bound 22) with
the small feature in the smooth region blurred out; (c) `∞-based image coding (Near-lossless CALIC at rate 0.38 bpp, PSNR
39.45dB, `∞ error bound 4) with speckles and contours as artifacts; and (d) Proposed method (at rate 0.47 bpp, PSNR 39.63dB,
`∞ error bound 4) preserving the small feature with minimal artifacts.
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Fig. 2. Flow diagram of near-lossless CALIC.

ria is that the former offers much finer rate granularity than
the latter. Now a natural inquiry, which is the main theme
of this paper, is in order: can one get the advantages of
the two metrics but not their shortcomings? Towards this
objective, we develop a new technique of incorporating a
mechanism of `2 optimization in the existing framework of
`∞-constrained image coding. Specifically, we modify the
near-lossless CALIC system by replacing the previous in-
loop uniform scalar quantizer with a set of context-based
`2-optimized scalar quantizers. The main innovations of this
work are the formulation of an algorithm for the optimal code
design problem of minimizing a weighted sum of the `2 dis-
tortion and the total rate over all possible quantizers, while
obeying a specified `∞ error bound.

What distinguishes our work from previous works on op-
timal quantizer design is mainly the criterion used in the op-
timization. Most quantizer design algorithms minimize the
`2 distortion for fixed-rate quantizers [9, 10, 11, 12, 13, 14],
or the weighted sum of `2 distortion and entropy [16, 17, 18],
for entropy-constrained quantizers. We are not aware of any
work which incorporates the `∞ constraint alongside.

The proposed image coder obtains good rate-distortion
performance in both `2 and `∞ metrics and also it increases
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Fig. 3. Flow diagram of the proposed method.

the rate granularity. Compared with JPEG 2000, the new
method not only guarantees lower `∞ error for all bit rates,
it even achieves higher PSNR for relatively high bit rates.
As shown in Fig. 1d, the proposed image coder eliminates
the artifacts in the image of near-lossless CALIC (1c) and at
the same time it preserves the tiny feature that is removed by
JPEG 2000 (Fig. 1b).

2. SCHEMATIC DESCRIPTION OF THE
PROPOSED CODER

Since the proposed coder builds upon `∞-constrained CALIC,
we first briefly present the latter coding technique. As shown
in the flow diagram in Fig. 2, l∞-constrained CALIC in [5]
consists of five main components: gradient-adjusted predic-
tion (GAP), uniform quantization, context formation and quan-
tization, context modeling, and entropy coding. Let I be the
current pixel value to be encoded. The GAP module makes a
prediction Ī of I based on the knowledge of the reconstructed
pixels in a precisely defined neighbourhood. The prediction
Ī is further improved to Î by adding the conditional sam-
ple mean of the quantized prediction errors µ(ê|ć) condi-
tioned on the error modeling context ć. The resulting residue
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Fig. 4. Example of test image: Fruits (600× 400 pixels).

e = I − Î is then quantized with a uniform scalar quantizer
generating ê. The reconstructed pixel value Ĩ = Î + ê and
the quantized prediction residue ê are fed back into the sys-
tem to be used in the encoding of future pixels in the image.
Finally, the sequence of quantized prediction residues is loss-
lessly entropy coded by means of a context-based arithmetic
coder. Only eight coding contexts c are used for this purpose,
which are formed by quantizing an error energy estimator ∆
into eight bins.

The proposed image coder, shown in Fig. 3, replaces
the uniform quantizer of prediction errors in near-lossless
CALIC by scalar quantizers optimized for each individual
coding context. The optimization problem aims at minimiz-
ing a weighted sum of the average `2 distortion and average
entropy over all eight coding contexts, while preserving a
maximum error bound for each prediction error.

3. OPTIMAL CONTEXT-BASED QUANTIZATION
OF PREDICTION ERRORS

In order to formulate the problem we first need to introduce
some notations. The set to be quantized is E = {en}Nn=1,
where en = −2B + n, N = 2B+1 − 1 and B is the num-
ber of bits used per pixel in the raw image. Let the quan-
tizer partition be P = {C1, C2, . . . , CK}, for some K ≥ 1,
where Ci = (ai−1, ai] = {en | ai−1 < n ≤ ai} for
0 = a0 < a1 < · · · < aK = N . Further, let yi denote the
reproduction value corresponding to codecell Ci. Keeping
in mind the optimization criterion of minimizing a weighted
sum of the `2 distortion and entropy, while obeying an `∞
bound of τ , we determine yi as follows

yi = arg min
y∈E,|en−y|≤τ,en∈Ci

∑
en∈Ci

p(en)(en − y)2, (1)

where p(en) is the probability of the prediction residue en.
First of all, for the solution to (1) to exist, we must have

(ai − ai−1) ≤ (2τ + 1) for all i. Then the optimal solution
to (1) is given by

yi =


(eai−1 + 1) + τ, if (µ(Ci)− (eai−1 + 1)) > τ

eai − τ, if (eai − µ(Ci)) > τ

[µ(Ci)], otherwise,

where µ(Ci) =
∑
en∈Ci p(en) en

p(Ci) , p(Ci) =
∑
en∈Ci p(en),

and [µ(Ci)] denotes the closest integer to µ(Ci).
By optimizing the reproduction codewords for each en-

coder partition via (1), the `2 distortion and the output en-
tropy corresponding to a quantizer become only functions of
the encoder partition. Let us define the `2 distortion and the
entropy for each codecell Ci as d(Ci) =

∑
en∈Ci p(en)(en −

yi)
2 and r(Ci) = −p(Ci) log2 p(Ci), respectively. Then the

`2 distortion and the entropy corresponding to a quantizer
with encoder partitionP areD(P) =

∑
C∈P d(C) andR(P) =∑

C∈P r(C). Now let us denote by Pm the encoder partition
corresponding to the scalar quantizer for coding context cm,
where 1 ≤ m ≤ M , with M = 8 for near-lossless CALIC.
Subsequently, let DT and RT , respectively, denote the ex-
pected `2 distortion and entropy of all quantizers over all M
contexts as follows

DT =

M∑
m=1

q(cm)D(Pm), RT =

M∑
m=1

q(cm)R(Pm), (2)

where q(cm) is the probability of context cm. It is important
to note that in the computation of D(Pm) and R(Pm), the
probability p(en) is the conditional probability of residual
en conditioned on context cm.

After having established the above notations we can now
formulate our task as the optimization problem

min
{P1,P2,...,PM}

DT + γRT , (3)

for some γ > 0, where the optimization is performed over all
possible M -tuples of partitions P1,P2, . . . ,PM with code-
cells of maximum size 2τ+1. It is easy to see that (3) can be
solved by individually minimizing J(Pm, γ) for each con-
text cm, where J(Pm, γ) = D(Pm)+γR(Pm). Further, no-
tice that J(Pm, γ) is additive over codecells, in other words,
the following holds

J(Pm, γ) =
∑
C∈Pm

(d(C) + γr(C)). (4)

The above additivity property allows for minimizing (4) by
solving a minimum weight path problem in a weighted di-
rected acyclic graph (WDAG)G. This graph model is similar
in spirit to that used in [18], with the notable difference that
in [18] the `∞ constraint was not imposed. The set of ver-
tices of G is V = {0, 1, . . . , N} and the set of edges is E =
{(x, y)|0 ≤ x < y ≤ N, y − x ≤ 2τ + 1}. Each edge (x, y)
represents a possible codecell C = (x, y] and the weight as-
signed to the edge is w(x, y) = d(C) + γr(C). It is clear
that any path in the graph G from 0 to N is in unique corre-
spondence with a partition Pm, whose cost J(Pm, γ) equals
the weight of the path. Thus, minimizing (4) is equivalent
to solving the minimum weight path problem in G, which
can be done in O(τ2N) (accounting for the computation of
edge weights as well). Consequently, solving (3) requires
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(c) Fruits

Fig. 5. `∞ error bound of test images compressed at different rates.
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Fig. 6. PSNR of test images compressed at different rates.

O(τ2MN) = O(N) since τ and M are upper bounded by a
constant.

4. EXPERIMENTAL RESULTS

A training set of four 8-bit high resolution images, were used
to obtain the probability distributions of prediction errors
for every context cm and every value of τ ∈ {1, 2, · · · , 8}.
When collecting these data the unquantized pixel values were
used in the prediction. Further, each distribution was approx-
imated by a Laplacian distribution centered at zero. For each
τ ∈ {1, 2, · · · , 8}, we have solved (3) for a decreasing se-
quence of values of γ, starting with some high value γ0,τ .
For each τ the partitions P∗1 ,P∗2 , . . . ,P∗M , corresponding to
the optimal solution for γ0,τ , are very close or even identi-
cal to the uniform quantizers in near-lossless CALIC, which
have the largest possible step size of (2τ+1). We will denote
by R0(τ) the value of RT corresponding to this solution.
Then all the values RT achieved for the same τ are larger
than R0(τ). Furthermore, one has R0(τ + 1) < R0(τ). Fur-
ther, in order to proceed to testing the proposed coder on real
images we have selected for each τ only those M -tuples of
partitions corresponding to entropies RT satisfying the con-
dition R0(τ) ≤ RT < R0(τ − 1).

We have performed a comparison with near lossless
CALIC and JPEG 2000, in terms of `2 and `∞ performance.
One of the test images is presented in Fig. 4.

Fig. 5 plots the `∞ error bound versus bit rate, demon-
strating the superiority of the proposed coder over JPEG2000
for all achievable bit rates. Fig. 6 plots the PSNR versus
bit rate. As can be seen, the proposed coder achieves all
possible bit rates of near-lossless CALIC with equal PSNR,
plus many more intermediate bit rates; the former generates
a monotonically increasing PSNR-rate function having much
denser data points than the latter. Furthermore, the proposed
coder outperforms JPEG2000 even in `2 metric if rates are
sufficiently high.
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