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ABSTRACT

This study presents a method to analyze blood-oxygen-level-

dependent (BOLD) functional magnetic resonance imaging

(fMRI) signals associated with listening to continuous mu-

sic. Semi-blind independent component analysis (ICA) was

applied to decompose the fMRI data to source level activa-

tion maps and their respective temporal courses. The un-

mixing matrix in the source separation process of ICA was

constrained by a variety of acoustic features derived from the

piece of music used as the stimulus in the experiment. This

allowed more stable estimation and extraction of more activa-

tion maps of interest compared to conventional ICA methods.

Index Terms— independent component analysis, semi-

blind, acoustic features, natural music, functional magnetic

resonance imaging

1. INTRODUCTION

Independent component analysis (ICA), introduced by Comon

[1], is a method for finding latent variables from multivari-

ate data. After algorithmic improvements made by first Bell

and Sejnowski [2] and then Hyvärinen and Oja [3], it was

first applied by McKeown et al. [4] on blood-oxygen-level-

dependent (BOLD) functional magnetic resonance imaging

(fMRI) discovered by Ogawa et al. [5]. Even though fMRI

has been the subject of increasing interest to study the human

brain [6], little is known about fMRI elicited by natural, con-

tinuous, and long stimuli. The majority of existing studies

present event-related or block designs, where the stimuli are
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short and artificial. For investigating neural processing of nat-

uralistic stimuli, researchers have measured BOLD responses

to simulated driving [7], watching movies [8, 9], listening

continuous speech or music [10, 11], and doing simple sen-

sory tasks [11]. In this study, fMRI elicited by a modern

Argentine tango with rich structure is examined.

An fMRI recording is a series of high spatial resolution

magnetic resonance imaging (MRI) volumes sampled on the

order of seconds. Using ICA, independence of latent sources

in either or both dimensions of fMRI, time and space, can be

maximized [4, 12, 13]. In this study, spatial independence

of the activated regions of the brain is maximized. Since real

world data might more or less violate the model of ICA [14],

introducing constraints to ICA algorithms may improve the

data decomposition [15, 16, 17]. In this study, a similar ap-

proach to constrain the unmixing matrix of ICA that was pro-

posed by Calhoun et al. [16] is used. What is novel in this

study is that a variety of acoustic features are derived from

the piece of music used as the stimulus in the experiment and

are utilized to constrain the unmixing matrix of ICA.

2. DATA

Eleven participants with formal musical training participated

in this study. Their average age was 23.2 years (standard de-

viation was 3.7 years), five of them were female, and all of

them actively practised playing at least one musical instru-

ment. None of the participants reported any neurological,

hearing or psychological problems. The fMRI measurements

were made using a 3-T (3.0T Signa VH/I General Electric)

scanner at the Advanced Magnetic Resonance Imaging (AMI)

Centre of Aalto University. The used stimulus was the mod-

ern tango Adios Nonino by Astor Piazzolla of duration 512
seconds and the sampling frequency of fMRI was 0.5 Hz. The

first 26 seconds of the fMRI were excluded to avoid artifacts

and the last 24 seconds due to applause in the piece of mu-
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sic. Thus, the final length of the analyzed fMRI data was 462
seconds. Refer to the study of Alluri et al. [10] for more in-

formation about the participants and the fMRI data.

3. SEMI-BLIND INDEPENDENT

COMPONENT ANALYSIS

3.1. A systematic spatial ICA approach

Consider a real-valued linear and instantaneous mixing model

x = As (1)

where x = (x1, . . . ,xm)⊤ are mixtures of some unknown

latent sources s = (s1, . . . , sn)⊤ and matrix Am×n giving

the mixing weights. This is the basic model of ICA where

noise is not explicitly modeled. In this study, the number of

sources n is originally assumed to be less than the number of

observations m, that is, the number of activated regions of the

brain to be less than the number of MRI scans. To separate

the fMRI data to signal and noise subspaces, and to account

for possible problems of overlearning and overfitting [18], the

dimension of data is reduced through

z = V⊤x (2)

where Vm×n is a dimension reduction matrix from principal

component analysis (PCA) and model order selection [19].

The objective of ICA is then to seek an unmixing matrix

Wn×n such that

y = Wz (3)

where y is an estimate of the original sources. In this study,

the unmixing matrix was found by iterating [20]

W† = E{zg(W⊤z)} − E{g′(W⊤z)}W (4)

W‡ = (W†W
⊤
† )−1/2W† (5)

until convergence. The maximization of independence in

equation (4) is about negentropy [20]. The nonlinear function

g(·) was set g(x) = tanh(x). Orthogonalization of columns

of the unmixing matrix in equation (5) is needed to avoid

finding any source more than once. Refer to the paper of

Hyvärinen [20] for all details of the algorithm. The temporal

courses of the activation maps (independent components) are

obtained by projecting the estimated mixing matrix back to

the time series of fMRI scans through the dimension reduc-

tion matrix V from equation (2) [21]:

(t1, . . . , tn) = VW−1

‡ (6)

3.2. Reference signals to constrain the unmixing matrix

Six musical features were derived for reference from the piece

of music used as the stimulus in the experiment. Since the

same musical features were used for correlation analysis in

the previous publication of Alluri et al. [10], with promis-

ing results, it was thought they would suit constraining the

unmixing matrix of spatial ICA as well [16]. They were la-

beled as Fullness, Brightness, Timbral complexity, Key clar-

ity, Pulse clarity and Activity, and obtained from a set of 25
acoustic features using PCA [10]. The musical features were

downsampled to match the sampling frequency of fMRI (0.5
Hz) and convolved with a double-gamma hemodynamic re-

sponse function (HRF) to account for the hemodynamic lag.

The features Fullness, Brightness and Activity reflect spec-

tral properties of the acoustic features in different frequency

bands. Timbral complexity is associated with Wiener entropy

of the spectrum of the acoustic features. Key clarity and Pulse

clarity are estimates of their self-describing names. Refer to

the study of Alluri et al. [10] for more information about the

musical features.

3.3. Spatial ICA with multiple temporal constraints

To make full use of all the available prior information, a semi-

blind ICA algorithm using multiple reference signals was de-

signed following the early work done by Calhoun et al. [16].

Since the prior information in this study are the six musical

features derived from the piece of music used as the stimu-

lus in the experiment, we constrain the temporal courses of

the activation maps. Denote the reference signals by r =
(r1, . . . , rk). In order to make any corrections feasible, the

scale and polarity of the references and corrected temporal

courses must match. Thus, to correct the ith temporal course

using the jth reference, we apply the following formula,

t+

i = (1 − α) · ti

+ sign(c) · α · rj · std(rj)
−1 · std(ti)

(7)

where α ∈ [0, 1] sets the strength of correction, c is the corre-

lation coefficient between ti and rj and std(·) is used to de-

note standard deviation. The strength of correction was cho-

sen to be α = I−1 where I is the iteration number of the ICA

algorithm. In this study, we set i = j and 1 ≤ i ≤ 5. The

number of musical features was reduced to five through aver-

aging the features Fullness and Activity, which showed a high

correlation (r > 0.9). After the corrected temporal courses

t+

i are obtained, the projection in equation (6) is updated to

constrain the unmixing matrix. The decreasing contribution

of references to the source estimations set by α = I−1 was

found to be very important. Because the nonlinear functions

g(·) used in the negentropy based objective functions of ICA

are sensitive to the underlying probability density functions

of the sources, convergence could stop near the threshold if

some of the references were not completely appropriate. This

happened particularly for those subjects showing large differ-

ence between the modeled and actual HRF.
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4. DATA PROCESSING

Before applying ICA, a digital filter and dimension reduction

were applied on the fMRI data for the preprocessing. The

purpose of the digital filter was to improve the SNR and to re-

move sources of no interest [22]. It was applied on temporal

course of each voxel [23] and designed to meet the proper-

ties of the musical features. Because most of the power of

the musical features was observed to be below .05 Hz, it was

taken as the high cutoff frequency for the filter. The low cut-

off frequency of .008 Hz followed the decision done in the

previous publication of Alluri et al. [10]. The dimension re-

duction was done through PCA and model order selection.

The model order was determined using the recently intro-

duced GAP method [24] and happened to be the same, 46,

for each participant.

Next, given an ICA algorithm, it was run for 100 rounds

to allow stability analysis of the data decomposition, and se-

lection of best estimates of the extracted activation maps and

their respective temporal courses using ICASSO [25]. In or-

der to produce more stable results, some of the rounds of ICA

can be rejected. Using the prior information available, the

suboptimal rounds of estimations of the mixing matrices of

ICA can be detected. Here, the suboptimal results were de-

termined through simple statistics with the six musical fea-

tures. Namely, the maximal correlation coefficient between

each musical feature and temporal courses of extracted activa-

tion maps was obtained. Those were then averaged to produce

a single quality parameter for each round and used to remove

the eighty worst of them. This step proved to be very impor-

tant (see Table 1), since the mechanism for the best estimate

selection implemented in ICASSO is sensitive to outliers.

After the best estimates of the extracted activation maps

were obtained from ICASSO for each participant, Pearson

correlation analysis was performed to select only those whose

temporal courses were significantly correlated (p < 0.01)

with the musical features for subsequent analyses; the rest

were ignored. A Monte Carlo approach similar to the one de-

scribed in [10] was used to find thresholds for detecting sig-

nificant correlations. Finally, from the activation maps whose

temporal courses were significantly correlated with the musi-

cal features, the ones appearing in the majority of participants

were found through visual inspection. This was possible be-

cause the number of activation maps whose temporal courses

were significantly correlated with the musical features was

much less than their total number of 506 (11 participants ×
46 activation maps).

5. RESULTS

See Fig. 1 for the average of task related activation maps

which were showing activation in the bilateral auditory cor-

tex and whose temporal courses were significantly correlated

(p < 0.01) with the musical features. This kind of activation

28 30 32 34

36 38 40 42

44 46 48 50

52 54 56 58

Fig. 1. Average of activation maps whose temporal courses

were significantly correlated (p < 0.01) with the musical fea-

tures Fullness, Brightness, Timbral Complexity and Activity.

The single activation maps were normalized and their polari-

ties made the same before the averaging. Red color is used to

highlight those voxels whose values differed more than three

standard deviations from the mean. The numbers marking the

slices are their z-coordinates.
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Fig. 2. The average of temporal courses which were signifi-

cantly correlated (p < 0.01) with the musical feature Bright-

ness under the activation map shown in Fig. 1. The single

temporal courses were normalized and their polarities made

the same before the averaging.

maps were found from 9 of the 11 participants. The total num-

ber of significant correlations was 20 (mean was 2 and stan-

dard deviation was 1.3 for participant-wise statistics). Fea-

ture Brightness had the most number (9) of correlations. See

Fig. 2 for the average of those temporal courses. The overall

results are summarized to Table 1. The results show about a

fifty percent improvement in the number of found activation

maps whose temporal courses were significantly correlated

with the musical features when the available prior informa-

tion was utilized in the unmixing process of ICA and in re-

jection of suboptimal estimations of the unmixing matrices

before ICASSO. The stability of the data decomposition was

remarkably improved when semi-blind ICA was used. This is

illustrated in Fig. 3.
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(c)

Fig. 3. Curvilinear component analysis (CCA) projections of activation maps extracted from one typical participant using

different ICA methods and number of rejected rounds. The projections were obtained from ICASSO under the default settings.

Compact and isolated clusters suggest stable estimates [25]. See (a) for the results of 100 rounds of standard ICA; (b) for the

results of 100 rounds of semi-blind ICA; and (c) for the results of 20 best rounds of semi-blind ICA. Compare (a) and (b) to

see the benefit of using prior information in the unmixing process of ICA and (b) and (c) to see the existence of detectable

suboptimal estimations of the unmixing matrices.

Table 1. Comparison of performance of different ICA methods

ICA Method Objective Function Nonlinearity Rejected Rounds Mean IQ Significant ICs

FastICA, standard Negentropy g(x) = tanh(x) 0 0.760 29

FastICA, semi-blind Negentropy g(x) = tanh(x) 0 0.844 32

FastICA, semi-blind Negentropy g(x) = tanh(x) 80 0.861 43

The column Mean IQ gives the mean of cluster stability indices (IQ) of the extracted activation maps suggested by ICASSO.

The range of IQ is [0, 1] and a higher IQ indicates better stability. The column Significant ICs the number of activation maps

whose temporal courses were significantly correlated (p < 0.01) with the musical features.

6. DISCUSSION AND CONCLUSIONS

This study examined fMRI brain activity associated to con-

tinuous listening to a whole musical piece through semi-blind

ICA. Our study was different from the previous designs of

semi-blind ICA in two aspects. Firstly, we used multiple ref-

erence signals derived from the long and continuous piece of

music used as the stimulus in the experiment. Secondly, the

contributions of the reference signals to the source estima-

tions were reduced as a function of the iteration number of

ICA, whereas the contributions of the reference signals were

fixed in [16]. Thus, the novelty of this study lies in using mul-

tiple musical features derived from the piece of music acting

as the stimulus in the experiment to aid the source separa-

tion process of ICA, and in classifying and rejecting subopti-

mal estimations of the unmixing matrices before any further

analysis. The presented approach gave much better results

than what could be obtained using the conventional ICA al-

gorithms (see Table 1). Much more activation maps whose

temporal courses were significantly correlated with the mu-

sical features could be found. Also, the stability of the data

decomposition was remarkably better.

Indeed, group ICA has been applied to study fMRI

elicited by real world experiences [11, 26]. In this study,

we applied ICA on individual subjects since it was unknown

whether our fMRI data could meet the theoretical assump-

tions of group ICA or not. In the future, we plan to evaluate

group ICA as well.
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