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ABSTRACT

In this paper, we investigate the performance of compressive sam-

pling (CS) for ECG compression in telecardiology, when the signal

acquisition is noisy and unavoidable body movements lead to vary-

ing heartbeat rate and sparsity of the signal. We show analytically

that CS recovery noise does not scale linearly with the input noise.

Hence, it is not easy to reduce the adverse impact of noise in CS. Ad-

ditionally, any variation in the heartbeat rate changes the sparsity and

can adversely affect compression. We compare the performance of

CS with thresholding discrete wavelet transform (TH-DWT), which

is the best technique for real-time ECG compression. We show that

CS is quite sensitive to sparsity and compression ratio, while the re-

construction quality of TH-DWT is quite stable. Our results suggest

that while CS is an attractive option for telecardiology due to its en-

coder simplicity, caution should be exercised in applying it for ECG

signal compression.

Index Terms— Electrocardiogram (ECG), compression, com-

pressive sampling, discrete wavelet transform.

1. INTRODUCTION

ECG telemonitoring (i.e., telecardiology) via wireless body area net-

works is an attractive solution to the important problem of long-

term ambulatory monitoring of chronic cardiovascular disease pa-

tients [1]. Traditionally, chronic cardiovascular disease patients are

required to wear an ECG data logging device for 2 days (Holter mon-

itoring) or up to a week (event monitoring). These devices are bulky

and obtrusive and can limit patient autonomy and mobility. With the

advent of wireless body area networks [1], it becomes possible to

transmit the ECG signal to a patient’s smart phone using low-profile

wireless sensors [2] and to send this information to the cardiologist

over the wireless/cellular network. In order to limit the cost and to

maximize the life of the sensors, it is desirable to limit the amount of

ECG data to be sent over the bandwidth constrained wireless/cellular

networks.

Compressive sampling (CS) [3,4] has recently emerged as an at-

tractive solution for compressing signals, and it has been applied to

the real-time energy-efficient compression for ECG telemonitoring

systems [5–8]. Current state-of-the-art real-time ECG compression

techniques are based on the digital wavelet transform (DWT) and

achieve higher compression at the cost of increased complexity [9].

In particular, thresholding discrete wavelet transform (TH-DWT) is

shown to outperform other techniques for real-time ECG compres-

sion [10]. By contrast, compressed sensing is a low complexity tech-

nique which exploits the sparsity in a signal to compress it. Since an

ECG signal is sparse in the wavelet domain, it is suitable for com-

pression using CS. Using dynamic thresholding for sparsity control,

it has been shown that CS of ECG in time domain can achieve 16×

compression [5]. Further CS based ECG compression can extend

sensor life by 37% compared to wavelet based compression [6]. A

hardware test bed that can achieve 10× or more CS based ECG com-

pression, without the need for any general purpose memory or pro-

cessing at the sensor nodes, is reported in [7]. Compressed sensing

for fetal ECG telemonitoring is investigated in [8].

Relationship to prior work: Most of the above studies assume

no noise [6–8] or extremely good signal-to-noise ratio (SNR), e.g.,

80 dB SNR [5]. They also assume a fixed sparsity level of the sig-

nal. However, these assumptions cannot be guaranteed in mobile or

future personal/wearable telecardiology where perturbations of the

ECG signal are unavoidable due to body movements and the exact

sparsity level of the signal may be time-variant. These important

issues are addressed in this paper.

In this paper, we evaluate the performance of ECG compression

using CS from the perspective of telecardiology, where the ECG sig-

nal acquisition is noisy and the heartbeat rate may vary due to body

movements. This is crucial because noise will adversely affect the

signal reconstruction and the heartbeat rate will influence the spar-

sity of the ECG signal. We compare the compression performance

of CS and TH-DWT methods for ECG signals of different sparsity

and noise levels, subject to the percentage root-mean-square differ-

ence (PRD) constraint which links the signal reconstruction quality

to diagnostic distortion [11]. The major contributions of this paper

are as follows:

• We consider the effect of imperfect ECG signal acquisition

due to noise and perturbations that may occur with body

movements. We show analytically that CS recovery noise

does not scale linearly with the input noise. Hence, it is not

easy to reduce the adverse impact of noise in CS.

• We show that subject to PRD < 9% constraint, which is re-

garded as good or very good diagnostic quality ECG signal,

TH-DWT achieves twice the compression as CS. In addition,

while the reconstruction quality of TH-DWT is quite stable,

for CS it is quite sensitive to noise, sparsity level and com-

pression ratio.

• Our results suggest that while CS is an attractive option for

telecardiology due to its encoder simplicity, caution should

be exercised in applying it for ECG compression where the

acquired ECG may be affected by noise and the sparsity level

of the signal may be time-variant.

The remainder of this paper is organized as follows. Section 2

briefly reviews the ECG signal compression using TH-DWT and CS

techniques. Section 3 discusses the effect of noise and sparsity of the

ECG signal on CS signal recovery. Section 4 presents the simulation

results comparing the performance of TH-DWT and CS for ECG

compression. Finally, conclusions are presented in Section 5.
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2. ECG SIGNAL COMPRESSION

2.1. Thresholding Discrete Wavelet Transform (TH-DWT)

Using wavelet basis functions, an ECG signal can be expressed as [9,

10]

y = Ψx, (1)

where Ψ ∈ R
N×N is wavelet basis matrix defined as Ψ =

[ψ
1
|ψ

2
| · · · |ψN ], and x ∈ R

N represents the coefficient vector.

We are only required to find x to recover the ECG signal as

ỹ = Ψx̃, (2)

where x̃ is the estimation of x. The wavelet coefficients of the ECG

signal can be estimated as

x̃ = Ψ
†
y, (3)

where Ψ
† is the Hermitian matrix of Ψ. Since an ECG signal is

sparse in wavelet basis domain, i.e., most coefficients are close to

zero, we can compress the ECG signal by choosing the coefficients

above some threshold with discrete wavelet transform. This is the

basic principle of the TH-DWT technique [12] which is used as

benchmark in ECG signal compression [10].

2.2. Compressive Sampling

According to the theory of CS [3, 4], the number of measurements

can be much smaller than that of bases to recover the coefficient vec-

tor of a sparse signal. Thus, we can apply CS in finding the sparse

ECG coefficients of wavelet bases. By applying the CS sensing ma-

trix Φ ∈ R
M×N to the ECG signal y = Ψx, where M ≪ N , we

get the CS ECG signal b ∈ R
M as

b = Ax, (4)

where A ∈ R
M×N is the CS measurement matrix defined as A =

ΦΨ. If the vector x is K-sparse, i.e.,

K =
∣

∣{j : xj 6= 0}
∣

∣, (5)

and any 2K columns of A are nearly orthogonal, then the vector x

can be estimated as

x̃ = argmin
x̂

‖x̂‖1, s.t.Ax̂ = b, (6)

where ‖x̂‖1 :=
∑N

i=1
|x̂i|. Candès and Tao [13] explain the possi-

bility of this recovery with the concept of restricted isometry prop-

erty (RIP). In particular, if there exists δ2K called restricted isometry

constant (RIC) satisfying

(1− δ2K) ≤ ‖Ax2K‖22
‖x2K‖2

2

≤ (1 + δ2K), (7)

where ‖x̂‖2 :=
√

∑N

i=1
|x̂i|2, and it is quite smaller than one for

any 2K-sparse vector x2K , recovery is possible with high probabil-

ity even when M is much smaller than N . Since we only use M
measurements in reconstructing the N -dimensional ECG signal, it

is possible to compress the ECG signal with CS.

Remark 1. In terms of complexity, the CS encoder is much sim-

pler than TH-DWT encoder since the size of CS observation matrix

Φ is much smaller than that of the Hermitian matrix of wavelet bases

Ψ
†. Another reason why CS is particularly attractive for ECG tele-

monitoring is that the computational burden of the technique lies in

the decoding (ℓ1-minimization), which can be done accurately at the

remote hospital side.

3. EFFECT OF NOISE ON CS ECG SIGNAL

If the ECG signal is perturbed by body movements and any noise

while it is being measured, then the perturbed signal can be ex-

pressed in wavelet domain as

y
p = Ψ(x+ n) + e = y + yn, (8)

where n is the noise on the coefficient x, e is the noise on the mea-

surement, and yn is the total noise on y expressed as

yn = Ψn+ e. (9)

In order to characterize the effect of perturbations analytically, we

assume that n and e are independent additive white Gaussian noise

(AWGN) with covariances σ2

nI and σ2

eI , respectively. Note that this

is a simple way to model the perturbations arising from body move-

ment, and further investigations are required to model the perturba-

tions more accurately. Given this assumption, we can characterize

the effect of noise for both TH-DWT and CS methods.

For TH-DWT, since the wavelet basis matrix Ψ is orthonormal,

the variance of yn will be σ2

y = σ2

n + σ2

e . Since the TH-DWT

method sets the negligible coefficients to zero, we can see that this

helps to reduce the adverse effects of signal perturbation. We can,

therefore, expect ECG compression using TH-DWT to be robust to

noise [12].

For CS, the situation is more complicated. The CS ECG signal

which is contaminated with perturbation can be expressed as

b
p = b+ bn, (10)

where bn is the CS noise observed as bn = Φyn. The variance of

the CS noise bn, ifA satisfies the RIP, can be approximated through

noise folding effect of CS [14] as

σ2

b ≈ σ2

n

N

M
+ c0σ

2

e , (11)

where c0 is a constant determined by CS sensing matrix Φ. From

(11), we can see that the noise on the wavelet coefficient x is am-

plified by the factor of N/M . This could adversely affect the signal

recovery.

The vector x can be found as

x̃ = argmin
x̂

‖x̂‖1, s.t. ‖Ax̂− bp‖2 ≤ ε, (12)

where ε is an upper bound on ‖bn‖2. Using Markov inequality, the

tail probability of the Gaussian noise bn can be calculated as

P
(

(1 + ǫ)
√
Mσb ≤ ‖bn‖2

)

≤ exp(−c1ǫ
2M), (13)

where P(E) denotes the probability that the event E occurs, ǫ > 0
is a constant and c1 is a constant (Ch. 1 of [15]). If we set ǫ to one,

bn can be bounded as

‖bn‖2 < 2
√

Nσ2
n + c0Mσ2

e = ε (14)

with high probability. If δ2K <
√
2−1, the recovery noise is known

to obey

‖x − x̃‖2 ≤ Cε, (15)

where C is a constant which increases as the number of measurement

M decreases or the number of nonzero coefficients K increases.

Then, we can reconstruct the ECG signal as

ỹp = Ψx̃. (16)
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(a) ECG in Time domain.
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(b) ECG in Wavelet domain.

Fig. 1: ECG signals having different heartbeat rate and sparsity. The

beat rate of ECG2 is higher than that of ECG1, and ECG1 is more

sparse in wavelet domain.

Remark 2. The above analysis shows that the noise of CS recov-

ery is related to the error bound constant C, the number of wavelet

bases N , and the number of measurements M . If M ,N and the noise

are fixed, the CS recovery is affected by the sparsity K of the ECG

signal. This shows that the recovery noise of CS is more complicated

than that of DWT, and it is not easy to reduce the noise since the CS

recovery noise does not scale linearly with the input noise.

4. SIMULATION RESULTS

In this section, we compare the performance of ECG compression

using TH-DWT and CS methods, respectively, in various scenar-

ios. We use the ECG signal record number 100 from the MIT-BIH

database [16] as the test signal. For TH-DWT, the ECG signal is

captured with the length of L = 512 samples, and we use 512 bases

of D4 Daubechies wavelet in representing ECG signal length of 512
samples. The size of the wavelet basis matrix R

N×N is N = 512.

For CS, we use random Bernoulli matrix whose entries are ±1/
√
N

as CS sensing matrix Φ ∈ R
M×N , where M is the number of CS

measurements varying according to compression ratio. For a fair

comparison between TH-DWT and CS methods, we compare the

ECG recovery with the same amount of transmitted signals, e.g., if

the compression ratio is 50 %, then the highest 50 % wavelet coef-

ficients are transmitted to the receiver with TH-DWT method, while

CS measurements of M = 0.5×N are transmitted with CS method.

4.1. Recovery of ECG signals without noise

First we examine the recovery performance of ECG signals with dif-

ferent heartbeat rate and no noise (as a perturbation). The heartbeat

rate can change with physical activity and also in case of certain

medical conditions such as arrhythmia (irregular heartbeat). Thus

any change in the heartbeat rate will affect the signal sparsity. For

the simple emulation of different sparsity of an ECG signal, we just

change the speed rate with the same signal. Fig. 1 shows the plot
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Fig. 2: ECG recovery performance versus compression ratio.

of first 1000 samples of ECG signal record number 100 from the

MIT-BIH database (labelled ECG1). In Fig. 1(a), ECG2 is the twice

speeded up version of ECG1. We can see from Fig. 1(b) that since

the beat rate of ECG2 is higher than ECG 1, ECG2 has lower sparsity

of the wavelet coefficients than ECG1.

We compare the recovery performance subject to the percentage

root-mean-square difference (PRD), which is defined as

PRD =
‖y − ỹ‖2
‖y‖2

× 100%, (17)

where y is the received signal ỹ is the reconstructed signal. Note

that PRD < 9 is regarded as good or very good quality of the recon-

structed ECG signal in terms of diagnostic distortion [11].

Fig. 2 shows the PRD of the recovered signal versus compres-

sion ratio, averaged over 20 trials, with both TH-DWT and CS meth-

ods for ECG1 and ECG2. We can see that the recovery quality

of TH-DWT method is quite stable regardless of the sparsity and

the compression ratio. For PRD= 9, TH-DWT method achieves a

maximum compression of around 80% for both ECG1 and ECG2.

However, the recovery quality of CS method varies greatly accord-

ing to the compression ratio and the signal sparsity. For example,

for PRD= 9, a compression ratio of 40 % is achieved for ECG1 sig-

nal and a compression ratio of 30 % is achieved for ECG2 signal.

This result shows that TH-DWT method is better than CS method

in terms of PRD and CS cannot guarantee the same recovery quality

with different sparsity.

4.2. Recovery of ECG signals in noisy environments

For the emulation of mobile cardiology, where different kinds of per-

turbations are expected, we intentionally add some noise e to the

ECG signal before compression. For simplicity, we do not add the

noise n on the wavelet coefficients. To measure the adverse effect

of perturbation, we observe the signal quality of the reconstructed

signal with signal-to-noise ratio (SNR) defined as

SNR = 20 log
10

‖y‖2
‖y − ỹp‖2

. (18)

Fig. 3 and Fig. 4 show the SNR of the recovered ECG signal with

TH-DWT and CS methods. Fig. 3 shows that the reconstructed SNR

is relatively flat for TH-DWT method up to about 60 % compres-

sion ratio for all input SNRs. Additionally, the reconstructed SNR

is getting improved slightly due to the noise suppression ability of
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Fig. 3: TH-DWT Compression Under Noise : ECG recovery perfor-

mance versus compression ratio.
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Fig. 4: CS Compression Under Noise : ECG recovery performance

versus compression ratio.

TH-DWT if the input SNR is under 20 dB. However, for CS, the re-

constructed SNR falls sharply with compression ratio. This loss in

reconstructed SNR is more serious with higher SNR of input signal

and the less sparse signal. The SNR loss of CS against TH-DWT is

less than 3 dB under the compression ratio of 40 % if input SNR is

below 20 dB. These results show TH-DWT method should be used

if higher SNR of the reconstructed signal is required. However, we

can use CS method if higher SNR is not required for general ECG

monitoring.

5. CONCLUSION

In this paper, we have assessed the impact of noisy ECG signal ac-

quisition and varying heartbeat rate on the ECG signal compression

with CS. We have showed that the effect of noise on CS is not easy

to reduce since the CS recovery noise is not linear to the input noise.

We have compared the performance of CS to that of TH-DWT for

real-time ECG compression. We have showed that TH-DWT outper-

forms CS in terms of compression ratio and CS is very sensitive to

noise and sparsity level of the signal. Our analysis and simulation

results suggest that while CS is still an attractive solution for tele-

cardiology considering its encoder simplicity, caution should be ex-

ercised in applying it for ECG compression in the presence of noise

and time-variant sparsity level of the signal.
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