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ABSTRACT

This paper describes a system for discriminating innocent
from pathologic systolic heart murmurs in children based on
auscultation recordings. For sound signal analysis the use of
reassigned spectrogram is suggested. Both dimensions and
noise of the time-frequency representation were significantly
reduced using higher order singular value decomposition.
Optimal dimensions were selected through cross-validation
experiments on a database of auscultation recordings with
systolic murmurs from the University Hospital of Heraklion.
The database only consisted with recordings of high mis-
classification rate by general practitioners. Using support
vector machines for classification, the suggested approach
achieved an Equal Error Rate of 6.71 ± 1.18% and an Area
Under the Curve score of 0.9758 ± 0.0053 (95% confidence
intervals). The performance of the suggested classification
system is comparable to the reported accuracy of experienced
pediatric cardiologists on the same database, while it out-
performs alternative signal representations based on simple
STFT schemes.

Index Terms— Auscultation, heart murmurs, reassigned
spectrogram, higher order SVD.

1. INTRODUCTION

Classic heart auscultation using a conventional stethoscope
to detect abnormal heart sounds is the most common and
widely recommended method to screen for structural abnor-
malities of the cardiovascular system [1]. Normal blood flow
within the heart and vessels is mainly laminar and therefore
silent. Passing through abnormal communications or nar-
rowed valves, the blood flow becomes turbulent; vibration
generated to surrounding tissues, gives rise to audible ad-
ditional sounds referred to as murmurs [1]. Heart murmurs
are non-stationary signals, characterized by sudden changes
in intensity and spectral content, varying temporal dura-
tion and position in the cardiac cycle (systolic or diastolic
phase) [2–4]. Except for pathological murmurs which are re-
lated to underlying heart disease, a significant percentage of
children exhibits innocent functional murmurs [5]. Moreover,
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murmurs in the same category (innocent or pathological) dif-
fer among individuals due to the variation in the physiology
of the heart and other body parts (e.g. chest) [4]..

Detecting relevant symptoms and forming a diagnosis
based on the sounds heard through a stethoscope, is a skill
that can take years to acquire and refine [6]. It has been
proven that general practitioners and pediatricians cannot ac-
curately distinguish pathological heart sounds from innocent
functional murmurs [5]. Their diagnostic accuracy is inter-
nationally reported as low to moderate. Suboptimal clinical
skills of physicians and pediatricians result in inappropriate
referrals and misuse of expensive diagnostic methods such as
the echocardiogram, which is the predominant noninvasive
diagnostic method in cardiology nowadays [5, 6].

An interesting alternative is the remote, on-line or off-line,
auscultation in children based on high quality digital record-
ing of heart sounds (phonocardiography) [7–9]. Depending
on the digital stethoscope, a sensitivity of 87-100% and a
specificity of 82-88% in the discrimination of innocent and
abnormal murmurs has been reported when experienced pe-
diatric cardiologists evaluate digital recordings referred to as
phonocardiograms (PCG) [8].

There have been a few attempts towards automatic dis-
crimination between functional and abnormal murmurs based
on auscultation recordings. Earlier approaches mostly relied
on wavelet analysis for feature extraction [10, 11]. More re-
cently, quadratic energy distributions have been tested and
compared to magnitude of Short Time Fourier Transform
(STFT) and wavelet transform representations for detection -
not classification - of cardiac murmurs [12]; various nonpara-
metric techniques such as Mel frequency cepstral coefficients
(MFFC) were used for estimating the spectral power con-
tours which were evaluated as features for classification [12].
It was shown that the quadratic energy distributions com-
bined with MFCC contours achieved the best classification
performance [12].

In this study, a system is developed for automatically dis-
criminating innocent from pathologic murmurs based on the
reassigned spectrogram [13] of the PCG. Since diastolic mur-
murs are usually regarded as pathological [5], only systolic
murmurs were considered. The short -time Fourier transform
(STFT) is used as the input time-frequency representation for
the reassignment algorithm. The database consists of PCG
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recordings of high misclassification rate by general practition-
ers, from the Pediatric Cardiology Unit of University Hospital
of Heraklion, Crete. For the dimensionality reduction of the
time - frequency representations higher order singular value
decomposition (HOSVD) was employed [14]. The singular
value decomposition (SVD) of a time-frequency distribution
was first proposed in [15] for the Wigner distribution. By
truncating the series after the first few terms of the decom-
position, a significant noise reduction is accomplished while
retaining most of the signal [16]. Comparing to SVD, reduc-
tion in dimensionality of feature space through HOSVD can
be performed in every subspace separately. Cross-validation
experiments - using Support Vector Machines as classifier -
are performed then in order to determine the number of sin-
gular vectors to be retained in each subspace.

The paper is organized as follows: Section 2 briefly de-
scribes the reassignment method for the time-frequency rep-
resentation of heart sounds. In Section 3 the HOSVD of the
reassigned spectrogram is presented. The pattern classifica-
tion algorithm and the performance analysis measures are pre-
sented next, followed by a discussion of the results and future
directions.

2. TIME-FREQUENCY REPRESENTATION OF
HEART SOUNDS

To follow the time varying characteristics of the heart sounds,
a time-frequency representation (TFR) is required. The most
common TFR is that obtained by the short time Fourier
Transform (STFT). STFT contains just a few cross-terms
arising from interference phenomena; however this is ob-
tained at the expense of poor resolution of the individual
components of multi-component signals [13]. The reassign-
ment method was selected to be used since it is specifically
designed to overcome this trade-off between resolution in
time and frequency [13, 17]. Reassignment aims at sharpen-
ing time-frequency and time-scale representations in order
to improve their readability [17]. The reassignment method
used in this work, initially employs a short-time Fourier trans-
form (STFT), denoted as Fx(t, ν;h); t, ν refer to time and
frequency, respectively, and h is the frequency analysis win-
dow. The length of the analysis window h(n) - as well as the
degree of overlap between successive windows - controls the
trade-off between resolutions in the time and frequency axes.
The reassigned time-frequency distribution uses information
from the phase spectrum to sharpen the amplitude estimates
for each bin of the STFT [13].

3. MULTILINEAR ANALYSIS OF
TIME-FREQUENCY FEATURES

Every PCG segment is represented in the time-frequency
plane as a two-dimensional matrix B ∈ R

I1×I2 , where I1
and I2 correspond to the frequency and time dimensions,

respectively. Let I3 denote the number of signal segments
contained in the training set. The mean value is computed
over I3, and it is subtracted from all the spectra in the training
set. The zero-mean spectra are then stacked, creating the
data tensor D ∈ R

I1×I2×I3 . A generalization of Singular
Value Decomposition (SVD) algorithm to tensors referred to
as Higher Order SVD (HOSVD) [14] enables the decompo-
sition of tensor D to its mode−n singular vectors:

D = S ×1 U
(1)

×2 U
(2)

×3 U
(3) (1)

where S is the core tensor with the same dimensions as D;
S ×n U

(n), n = 1, 2, 3, denotes the n−mode product of
S by matrix U

(n); U(1) ≡ Uν ∈ R
I1×I1 , U

(2) ≡ Ut ∈

R
I2×I2 and U

(3) ≡ Us ∈ R
I3×I3 are the unitary matri-

ces of the corresponding subspaces of frequency, time and
samples. Each matrix U

(n) contains the n-mode singular
vectors (SVs):

U
(n) =

[

U
(n)
1 U

(n)
2 . . . U

(n)
In

]

. (2)

The contribution αn,j of the jth n-mode singular vector

U
(n)
j is defined as a function of its singular value λn,j :

αn,j = λn,j /

In
∑

j=1

λn,j (3)

By setting a threshold, the Rn, n = 1, 2 singular vectors
(SVs) whose contribution exceeds that threshold are retained.
The truncated matrices Û

(1) ≡ Ûν ∈ R
I1×R1 and Û

(2) ≡

Ût ∈ R
I2×R2 are obtained then. Time-frequency represen-

tations B ∈ R
I1×I2 extracted from phonocardiographic sig-

nals are projected on Ûν and Ût:

Z = B×1 Û
T
ν ×2 Û

T
t = Û

T
ν .B.Ût (4)

where Z ∈ R
R1×R2 , R1, R2 ≪ I1, I2 [14].

4. EXPERIMENTS AND RESULTS

4.1. Database

Pediatric cardiology outpatients referred for murmur evalua-
tion or followed-up for heart disease at the University Hos-
pital of Heraklion, Crete, which had undergone a complete
echocardiographic study, were eligible for enrollment in the
study. Therefore, the database is accordingly labelled (ground
truth is known). Informed consent was obtained from the par-
ents.

A sensor based electronic stethoscope with incorporated
3 lead electrocardiograph (ECG) was used (TheStethoscope,
Welch Allyn-Meditron, AS). Five recordings of 6 sec dura-
tion each were performed, corresponding to the apical, lower
left sternal border (LLSB), upper left (ULSB) and upper right
sternal border (URSB) as well as a jugular fossae recording
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(JGLR). PCG and ECG signals were synchronously recorded
using the designated software (Meditron Analyzer 4) with
44,100 KHz sampling rate and 16 bit dynamic resolution.
Recordings were evaluated by a pediatric cardiologist (2nd
co-author); if three or more recordings in a given case could
not be accurately interpreted due to low quality, this case was
excluded from the original database.

The final database includes 25 cases with innocent mur-
murs and a normal echocardiographic study, and 25 patients
with abnormal systolic murmurs and an echocardiographic di-
agnosis of a congenital heart disease.

4.2. Preprocessing of PCG recordings
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Fig. 1. PCG signal (solid) with innocent murmur (SM) and
envelope of ECG signal (dash). Stars at maxima of ECG en-
velope (R-peaks), point to the beginning of heart cycles.

The PCG-synchronous ECG signals were used as refer-
ence for detecting heart sounds since the R-peaks in ECG co-
incide with the beginning and end points of heart cycles. Both
ECG and PCG signals were down sampled to the same sam-
pling frequency of 2205 Hz. The ECG signal was band-pass
filtered with cut-off frequencies of 10 and 25 Hz and the R-
peaks were detected using an envelope based detection algo-
rithm [18]. The R-R intervals were used then as a reference
for heart cycle detection and segmentation of the PCG sig-
nals [19]. Heart cycles have different lengths depending on
the cardiac rhythm. Heart rates in children are quite variable
depending on their age and physiological state (fever, fear,
activity level etc). The length of the systole however is quite
stable as increased heart rate is achieved physiologically at
the cost of reduced diastolic (relaxing) interval [19]. For ex-
ample, if the heart rate varies between 60 and 120 beats per
minute (with corresponding heart cycles between 1 sec and
500 ms), then the systole length will vary between 291 and
231 ms respectively [19]. We have chosen then to analyze

a fixed-length segment comprising of the first 400 ms of the
heart cycle. In our database, this 400ms segment always in-
cluded the first heart sound, S1, the whole systolic phase and
the second heart sound, S2 (Figure 1).

For every recording, five consequent heart cycles were
considered. PCG signals were band-pass filtered with cut-off
frequencies of 40 and 1100 Hz [19], since the maximum of
frequency spectrum of heart sounds reaches up to 850 Hz [1].
The 3rd order Butterworth type high-pass and low-pass fil-
ters were used. The amplitude of each signal was scaled then
by the absolute maximum of each PCG recording [20] (see
Figure 1). Reassignment spectra were computed using the
Time - Frequency Toolbox [21]. Figure 2 (a) depicts the reas-
signed spectrogram amplitude of the PCG of a 10-years old,
with an innocent systolic murmur of intensity equal to 3 in a
3-degree scale. Figure 2 (b) depicts a pathologic systolic mur-
mur in the PCG of an 11-years old child with atrial septal de-
fect (ASD). The auscultation area was the same in both cases
(LLSB). Due to the variability of different heart pathologies,
the case of pathological murmur cannot be considered ”typi-
cal”: frequencies in the systolic phase are below the 200 Hz
limit, resembling an innocent sound according to the com-
mon screening criteria [20]. Still, they are sustained for the
whole systolic duration. Also the second heart sound spectro-
temporal content is a characteristic of ASD [20].

For the computation of the singular matrices of HOSVD,
a random subset of 15 subjects with innocent and 15 subjects
with pathological murmurs was selected once; three record-
ings - with five consequent heart cycles each - were con-
sidered for each subject. For every contribution threshold,
the resulting matrices Z ∈ R

R1×R2 (according to eq (4))
were subsequently reshaped into vectors before classification.
Classification was carried out using Support Vector Machine
(SVM) classifiers. SVM find the optimal boundary that sepa-
rates two classes maximizing the margin between separating
boundary and closest samples to it (support vectors) [22]. In
this work, SVMlight [22] with a Radial-Basis-Functions ker-
nel was used. A 5-fold stratified cross-validation was used, re-
peated 25 times. In every run, the classifier was trained on the
80% of subjects of both classes, then tested using the remain-
ing 20%. Training and testing was based on 400ms segments
from a single heart cycle. Classification of PCG recordings
was based on the median of the decisions over segments from
five consequent heart cycles of this recording.

The system performance was evaluated using the Receiver
Operating Characteristic (ROC) curve as well as the detec-
tion error trade-off (DET) curve between false rejection rate
(or miss probability Pmiss, equal to one minus sensitivity)
and false acceptance rate (or false alarm probability Pfalse,
equal to one minus specificity) [23]. The optimal detection
accuracy (DCFopt) occurs when the threshold is set such that
the total number of errors is minimized. The Equal Error
Rate (EER) refers to the point at the DET curve where the
false-alarm probability equals the miss probability. Stratified
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Table 1. Classification scores with 95% confidence intervals based on RSP and STFT for one or five heart cycles (one recording)
AUC DCFopt(%) Pmiss(%) Pfalse(%) EER (%)

one heart cycle - RSP 0.8938±0.0066 85.49±0.80 13.14 16.02 17.34±0.90

one heart cycle - STFT 0.8534±0.0062 80.11 ±0.57 19.05 20.49 22.62±0.79

one recording - RSP 0.9758±0.0053 95.87±0.72 4.36 3.93 6.71±1.18

one recording - STFT 0.9274 ±0.0076 90.78± 0.67 5.53 12.95 13.78 ±1.07

(a) (b)

Fig. 2. Energy (in dB) of the reassigned spectrogram of the PCG (a) of a 10-years old with loud innocent murmur, (b) of an
11-years old with atrial septal defect and pathological murmur.

cross-validation was performed while varying the contribu-
tion threshold αn,j (eq. 3) and retaining the R1, R2 singular
vectors whose contribution exceeded that threshold. The area
under the ROC curve (AUC) was the criterion for selecting
the optimal dimensions R1, R2 for the classification of the
TFR projections (eq. 4). The best system for reassigned spec-
trogram (RSP) used [20 × 19] dimensions (380 features vs
[440×294] initially) which corresponded to an αn,j = 0.02%
and an AUC of 0.9758 ± 0.0053 (95% confidence interval,
CI). For STFT the best system used [14 × 12] dimensions
(168 features vs [513 × 12] initially) which corresponded to
an αn,j = 0.6% and an AUC of 0.9274±0.0076 (95% CI).
Table 1 provides the average of classification score both for
RSP and STFT, in terms of the AUC, DCFopt (with corre-
spondingPmiss andPfalse), EER and the corresponding 95%
CI as these were estimated from the 25 runs. The scores per
heart cycle and per recording (five consequent heart cycles)
are provided. The more pronounced effect of increased time
resolution of reassigned TFR compared to STFT spectrogram
is the significant reduction of false alarm rate when taking the
median of decisions over five consequent heart cycles for each
recording.

5. DISCUSSION

In this study we aimed to develop and validate the clinical
efficacy of an automatic detection and classification system
of pediatric heart sounds based on reassigned spectrogram.
Selected cases were in the gray area of easily misclassified
systolic murmurs by general practitioners, being either loud
innocent murmurs radiating to all sites, or abnormal murmurs
associated with mild to moderate heart defects. Normal sub-
jects without any heart murmur were not considered.

Our results were comparable to the accuracy achieved by
experienced pediatric cardiologists on the same database [9].
More specifically, 96% of moderate to severe congenital heart
disease and more than 92% of children with functional mur-
murs were accurately detected in blind, off-line auscultation
by two experienced pediatric cardiologists. The correspond-
ing scores of our system were 95.87% and 96.07%, i.e., sys-
tem specificity was better. System sensitivity could be fur-
ther improved by employing additional information such as
the variability of the wide split of the second heart tone with
respiration, or the variable intensity of the first heart sound
between consequent heart cycles [19, 24].
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