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ABSTRACT

This paper addresses the problem of heart sound (HS) extraction in
different types of single-channel respiratory sound (RS) signals by
proposing a multiscale mean shift localization approach. First, the
incoming respiratory signal (RS) are identified into linear/nonlinear
portions by using third-order cumulant. Second, the identified linear
and nonlinear portions are processed separately to tackle the large
variations in the signal characteristics of adventitious sounds. The
time-varying mean-shifts of the weighted log likelihood ratios of
wavelet features are then calculated to capture the signal dynam-
ics of various noisy RS signals. The proposed approach provides
promising results giving an overall false localization rate as low as
(1.8 ± 1.8)% for normal lung sound (LS) and (0.1 ± 1.7)% for
adventitious sound signals. Therefore, the presented approach suc-
cessfully attempts to solve the key clinical challenges faced by the
existing localization methods in terms of respiratory ailments.

Index Terms— Multiscale Mean Shift Localization, Heart
Sound (HS), Respiratory Sound (RS), Adventitious Sound, Mul-
tiscale Decomposition.

1. INTRODUCTION

The localization of HS in normal RS signal is usually achieved by
thresholding the extracted feature sequence based on some selected
properties of RS and HS signals. Adaptive thresholding has been
the most practical approach as it does not require any a priori in-
formation of the signal. Then certainly the accuracy of HS local-
ization depends on both thresholds as well as effectiveness of the
extracted features by discriminating HS from RS. In the literature,
the thresholds have been calculated either globally or segment-wise
based on extracted features such as average power [1][2] [3], lower
order statistics of the original signal [4], lower order statistics of
feature domain values [5]. On the other hand, the differentiating fea-
tures of HS and RS also include the time-frequency domain power
differences [1], signal singularities [4], signal distribution [5], phys-
iological dynamics [6] and signal complexity [7]. The HS localiza-
tion methods based on the above mentioned discriminating features
have been summarized in [8] and some comparison results are listed
in [9]. Recently, another method is proposed for localizing HS in
respiratory signals using singular spectrum analysis (SSA) based on
an effective time series analysis technique [10].

All of the above mentioned techniques have been developed for
RS signals captured over the chest (i.e. lung sound (LS)). However,
besides LS, tracheal breath sound (TBS) being a RS signal detected
over the extra thoracic portion of trachea, can be more appropriate
for the analysis of pathological sounds originating in larynx or tra-
chea (such as stridor). Therefore, real TBS recordings are also con-
sidered in this paper to evaluate the performance of our HS local-

ization framework. In fact, TBS is characterized by its broader noise
spectrum containing higher frequencies compared to the LS [11] sig-
nal. Because of that the spectra of HS signals captured over the
suprasternal notch are wide compared to the spectra of HS signals
recorded over the chest. It can be noted that since our focus here is
HS localization for different types of continuous adventitious sounds
rather than normal breath sound, the large variations to the types of
input signals as well as their amplitudes certainly downgrade the per-
formance of the existing methods based on power, dynamics, com-
plexity and distribution of the signal.

Hence, the aim of this paper is to develop a HS localization
scheme to be effective for different types of RS signals. The pro-
posed localization approach is based on multiscale mean-shift of the
weighted log likelihood ratio of the wavelet features. The perfor-
mance of the method is evaluated in terms of false detection rate and
boundary localization accuracy for real RS signals. Moreover, the
proposed approach is compared to a recent Shannon entropy based
method in [5] being chosen for comparison due to its reliable perfor-
mance under different amplitude ratios of HS and LS. The original-
ity of the proposed method compared to the existing methods for HS
localization lies in: (1) multiscale mean-shift approach for log like-
lihood ratios of the wavelet features; (2) two-stage approach consists
of identification of linear/nonlinear portions of input RS signal fol-
lowed by HS localization based on time-varying mean-shift which
seems to be robust to various types of RS signals.

2. METHODOLOGY

2.1. Signal Model

In particular, RS as heard over the large airways is primarily related
to the vibrations of the upper airway walls and turbulent airflow,
while HS occurs mainly due to the valvular activity of the heart. Both
hypothetical sources of HS and RS can be approximately considered
as point sources [12] which are assumed to be mutually uncorrelated.
However, the assumption is no longer valid at the recording position
since both RS and HS share some common transmission path before
recorded at the suprasternal notch.

The noisy input signal y is considered here to be a continuous
RS signal of different types contaminated by discontinuous HS sig-
nals. Then a corresponding noisy segment corrupted by the jth HS
signal is denoted by yj , which can be expressed as

yj = h(sj + vj), 1 ≤ j ≤ J (1)

where sj and vj are (N × 1) vectors denoting underlying RS com-
ponent of different types and HS component respectively. The to-
tal number of occurrence of HS signal is represented by J . The
vj or the jth occurred HS signal, which has a transient waveform,
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is then superimposed onto the uncorrelated RS signal sj , whereas
h(·) represents the effect of transmission path through trachea and
skin. In this paper, we assume additive signal model of RS and HS,
however do not consider the possibilities of multiplicative model, or
even more complex interaction for our initial work presented in the
following.

2.2. Proposed HS Localization Approach

2.2.1. Identification of Nonlinear Portions Based on Third-order
Cumulants

In this section, third-order cumulant is used in order to identify the
nonlinear portions of the input signal as derived in our previous
work, see [13] for more details. The nonlinear portions of the in-
put signal are extracted partitioning the rest being linear portions so
that

y = ‖
∑

g=1...G

{
y
L
g ,y

NL
g

}
(2)

where yL
g and yNL

g refer to the gth linear and nonlinear portions of
y, with G = {G1, G2} referring the total number of identified lin-
ear and nonlinear portions. Incidentally, if the input noisy RS signal
has max(ρ3) ≤ 10−8, then G = 0 considering that the RS signal
only has linear portions. The identified linear/nonlinear portions are
then concatenated alternatively as defined by the symbol ‖

∑
(e.g.

y = ‖
∑

{yL
g ,y

NL
g } = [yL

1 ;y
NL
1 ; · · · ;yL

g ;y
NL
g ; · · ·yNL

G ;yL
G]

g = 1, ...,G
if the signal starts and ends with linear portions). Fig. 1(a-b)(left
panel) show illustrative plots of the third-order cumulant and the
corresponding identified linear/nonlinear portions of a real RS sig-
nal. The HS locations AL

g and ANL
g obtained in the following

section 2.2.2 will be concatenated in a similar way as shown in (2).
The choice of window length to estimate the cumulant in [13]

is crucial in our proposed approach. It should be selected properly
in order to able to track the rapid variations while ignoring relative
slow variations. Here, window length of 2B + 1 is selected to be
much less than minimum duration of HS signal as 1/20 of the min-
imum duration of HS signal (which is 20 ms [17]), for which we
have the acceptable range 10 ≤ B ≤ 21 for Fs = 44.1 kHz,
while B ≤ 10 produces some distortion due to overestimation. It
is worthy to mention that the respiratory system can be considered
as an acoustic system where the acoustic properties can be calcu-
lated using electro-acoustic analogy [14]. And the linear/nonlinear
components of respiratory system [15] basically originate the lin-
ear/nonlinear portions of HS signals.

2.2.2. Multiscale Decomposition

The multiscale analysis of the proposed algorithm is done by time-
scale decomposition of an input signals by wavelet transform. This
affine time-scale transformation of the identified yL

g or yNL
g then

take the following matrix form:

yn = W
H
n yp (3)

where H is conjugate transpose. yn is with size (M × 1), yp refers
to yL

g or yNL
g with size (Np × 1), and Wn is a (Np ×M) matrix

given by

yn = [y(n, 0) y(n, 1) · · · y(n,M − 1)]T

yp = [y(n) y(n− 1) · · · y(n−Np + 1)]T

Wn =





ψ(n, 0) · · · ψ(n,M − 1)
ψ(n− 1, 0) · · · ψ(n− 1,M − 1)
... · · ·

...
ψ(n−Np + 1, 0) · · · ψ(n−Np + 1,M − 1)





with (·)T denoting the transposition and y(n,m) representing the
wavelet transform coefficient of yp at the mth scale. Among differ-
ent choices in the wavelet family, Morlet wavelet is employed here
because of its ability to provide different window lengths for signals
composed of different frequencies/scales. The Morlet wavelets form
non-orthogonal basis functions with considerable spectral overlap
among them and can be expressed by wavelet functions {ψ(n,m) =

π−1/4ej2πfon/me−n2/2m2

}, with n = 0, · · · , Np − 1 being the
time indices and m = 0, · · · ,M − 1 being the scale indices. Np

refers to the total number of samples of the noisy signal yL
g or yNL

g .
In compare to discrete wavelet transform, the continuous wavelet
transform being shift invariant, is able to provide high HS localiza-
tion accuracy.

2.2.3. Proposed Multiscale Mean Shift Localization

In the following, we propose a multiscale mean shift localization for
extraction of heart sounds in various respiratory signals. The local-
ization of HS signal is initiated by proposing time-varying mean-
shift that is proportional to the sum of the log likelihood ratios of the
multiscale features for the two hypothesis, H0 and H1.

H0 : yn = sn; H1 : yn = sn + vn (4)

where sn, vn and yn are the wavelet transform coefficients of s(n),
v(n) and yp(n), respectively. At a given time instance n, we have to
decide if yn contains the HS component vn, or it contains only the
RS component sn.

We employ the maximum likelihood approach, which provides
Generalized Log Likelihood Ratio (GLR) for the noisy input se-
quence yn and the underlying RS component sn with unknown co-
variances given by [18]

L(yn) = ln p(yn, R̂yy;H1)− ln p(yn, R̂ss;H0) (5)

where L(·) is the log likelihood ratio with R̂yy, R̂ss as the max-
imum likelihood estimates of the covariance under hypothesis H1

and H0, respectively. sn and vn are uncorrelated for the hypothesis
in (4).

For this, the covariance matrix of yn, Ryy, under hypothesisH1

is determined by
Ryy = E[yny

H
n ] (6)

with E[·] being the expectation operator. Using SVD of the covari-
ance matrix Ryy, we get Ryy = UΛUT , Λ = diag[σ2

1 · · ·σ
2
I ]

where U is the eigenvector matrix of Ryy and σ1 ≥ σ2 ≥ · · · ≥ σI

are the corresponding singular values with I denotes the total num-
ber of singular values.

Then the log-conditional probability density function of yn un-
der H1 is

lnp(yn;H1) = −
I

2
ln2π −

1

2

I∑

i=1

(
ln(σ2

i ) +
yH
n UiU

H
i yn

σ2
i

)
.

(7)
The log-conditional probability density function of yn under the hy-
pothesis H0 becomes

lnp(yn;H0) = −
I

2
ln2π −

I

2
lnσ2

s −
yH
n yn

σ2
s

(8)
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Using (7) and (8), we get

L(yn) = −
1

2

I∑

i=1

lnσ2
i +

I

2
lnσ2

s +
1

2σ2
s

I∑

i=1

(
σ2
i − σ2

s

σ2
i

)
|Uiyn|

2.

(9)
In order to obtain discriminant features, feature selection is consid-
ered here by using linear decomposition based on SVD and select-
ing the frequency scales. Since the covariance matrix can be ap-
proximated as R̂yy = R̂ss + R̂vv and R̂yy = ÛΛ̂ÛH ; Λ̂ =

diag[σ̂2
1, σ̂

2
2 , · · · , σ̂

2
I ], the SVD of R̂ss and R̂vv can therefore be

expressed in terms of the singular matrix Û of R̂yy as

R̂vv = ÛΛ̂vvÛ
H Λ̂vv = diag[σ̂2

v1, σ̂
2
v2, · · · , σ̂

2
vI ]

R̂ss = ÛΛ̂sÛ
H Λ̂s = σ̂2

s .I

Λ̂ = Λ̂v + Λ̂s σ̂2
i = σ̂2

vi + σ̂2
s .

(10)

By separating the dominant singular values from the rest as

Λ̂ = diag[σ̂2
1 , σ̂

2
2 , · · · , σ̂

2
r , σ̂

2
r+1, · · · , σ̂

2
I ] (11)

with σ̂{i|i=1,2,··· ,r} being the dominant or principal singular values,
the singular matrix Û can be partitioned into

Û = [Ûv Ûs], Ûv = [Û1 · · · Ûr], Ûs = [Ûr+1 · · · ÛI ].

The dominant singular values σ̂{i|i=1,2,··· ,r} and the corresponding
dominant singular matrix Ûv characterize the signal plus noise com-
ponents if σ̂{i|i=1,2,··· ,r} >> σ̂s. The columns of the Ûv matrix
therefore spans the signal plus noise space, while the columns of the
Ûs spans its orthogonal complement, namely the noise space [16].
The singular matrix Û under the hypothesis H1 can be then sub-
stituted by its estimate Ûv . At the same time, the singular values
{σi} and σ̂s can be substituted by their estimates σ̂{i|i=1,2,··· ,r} and
σ̂{i|i=r+1,··· ,I} respectively. Thus, Û ≈ Ûv, σ̂i ≈ σ̂{i|i=1,2,··· ,r},
and σ̂s ≈ 1

I−r

∑I
i=r+1 σ̂i.

Our localization approach is then originated from the idea of a
time-varying mean-shift d(n) based on the weighted log likelihood
ratios of the selected wavelet features defined as

d(n) =




n∑

n−Nd−1

ρnL(yn)∑n
n−Nd−1 ρn



− L(yn) (12)

L(yn) is calculated using (5), where the log likelihood of HS,
ln p(yn, R̂yy;H1), is calculated using (6) with coefficients yn

from scale 1 to 2. Similarly, the log likelihood of the underlying RS
component, ln p(yn, R̂ss;H0), is found by using yn from scales
3 to 24. Since scale 2 covers the whole frequency range of HS
component, the remaining scales can be considered for true RS. Fur-
thermore, the weighting function ρn is computed as the geometric
average of the wavelet coefficients along the scales to give more
importance to high-energy points and less to low-energy points.

The choice ofNd is based on the minimum duration of HS signal
so that the window length is more than the length of the HS signal
covering the target object. Since the input signal is divided into 24
subbands(as it consists of 8 uniform bands followed by decomposing
each band into 3 octave bands), the minimum duration of HS signal
is thereby scaled from 20 ms to 5 ms (since sampling rate Fs is
reduced by 4 due to the generation of 3 octave bands). Nd ≤ 200 is
therefore found to be an acceptable approximate range with respect
to minimum duration of HS signal and number of octave bands for

Fs=44.1 kHz calculated as Nd = (20/1000) ∗ (Fs/2
(3−1)), from

which we approximately set Nd =200.
Lastly a set of samples corresponding to large d(n) is obtained

to extract the HS signals based on the following selected thresholds.
Threshold Selection
Since d(n) captures the signal dynamics corresponding to TBS sig-
nal, a threshold γe

γe =
1

Np

Np∑

n=1

d(n) (13)

with Np being the number of samples for the noisy signal yp, is
applied to d(n) to get rid of noise effect and extract HS signals.
Finally, in order to improve the false and correct localization rates,
temporal thresholding is applied based on the following rules:

• Located segments smaller than 20 ms are discarded based on
the minimum duration of HS signals. [17].

• Located segments within 50 ms are merged based on the max-
imum interval of normal HS signals [17].

0 1 2 3 4 5 6
−5

0

5
x 10

−6

ρ
3
(b

)

(a)

0 1 2 3 4 5 6
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (s)     

A
m

p
li

tu
d

e

(b)

yNL

3
yL

3 yL

4
yL

2
yL

1 yNL

2yNL

1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

d
(n

)

Time(s)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

Time(s)

A

(b)

Fig. 1. (a) Left: Third-order cumulant of a real RS signal; (b) Orig-
inal waveform of the RS signal with its respective linear (dashed
line)/nonlinear (solid line) portions being labeled manually; Right:
(a) Time-varying mean-shift d for the noisy signal y displayed in
(c); (b) Noisy RS signal together with HS locations A.

3. RESULTS AND DISCUSSION

3.1. Data

The synthesized data are generated by superimposing true HS
recording onto various types of standard RS signal of same length
as provided by [19] and [20]. Five different types of RS signals
including normal LS for adults and infants, expiratory mild wheeze,
inspiratory stridor and expiratory moderate wheeze, monophonic
wheeze, and polyphonic wheeze, each of 10 seconds duration, have
been used for our simulation. The true HS recordings (which are
phonocardiogram (PCG) signals) together with synchronized elec-
trocardiogram (ECG) signals for healthy subjects are acquired from
the Department of Cardiology, Lund University Hospital, Sweden,
with permission.

3.2. Performance Index

The performance of the proposed HS localization approach is mea-
sured as a percentage of “true” S1 and S2 activities that have been
“accurately” located. A fundamental activity S1 has been counted
as accurately located with estimation error ǫ = 0% if the labeled S1
region of the synthesized signal coincides with the peak n the QRS
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complex in its synchronously recorded ECG signal. On the other
hand, correct S2 locations with estimation error ǫ = 0% are decided
by the experienced doctors through listening and labeling of true HS
signals. Any misalignment in the simulated signal increases the es-
timation error ǫ as defined by






ǫj = 1
2

{
|

P̂Sj−PSj

Dj
| + |

P̂Ej−PEj

Dj
|
}

µ =
∑J

j=1 ǫj

ǫ = µ±
√∑J

j=1(ǫj − µ)2

(14)

ǫj is the percentage error of the jth located HS segments, with P̂Sj

and P̂Ej being the estimated starting and end positions of the jth HS
segment obtained from the HS location sequence A. PSj and PEj

are the benchmark start and end positions of the jth HS segment with
Dj being the duration of the jth HS segment obtained based on the
doctors’ decision. J represents the total number of HS segments.

3.3. Results

Fig. 2 illustrates the HS localization results for a synthetic noisy
mild wheeze signal for the proposed method and the entropy based
method in [5]. Synchronized ECG signal is also displayed in
Fig. 2(c) for reference. The performance comparison of these two
methods for different types of HS contaminated RS signals is sum-
marized in Table 1. Mean and standard deviation of the estimation
error between the actual HS locations (based on synchronized ECG
signals and doctors’ decision) and the estimated HS locations for the
synthesized noisy RS signals are calculated. For performance eval-
uation, the ǫ is calculated for each subject using (14) followed by
averaging over the subjects. The proposed approach gives an overall
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Fig. 2. (a) HS localization results for the true HS signal using the
proposed method (solid line) and the entropy based method in [5]
(dotted line); (b) HS localization results for the synthesized noisy
mild wheeze signal using the proposed method (solid line) and the
entropy based method (dotted line); (c) The synchronized ECG sig-
nal.

estimation error as low as (0.1 ± 2.5)% for the true HS signals as

listed in Table 1. Furthermore, due to the different signal charac-
teristics, the performance of the presented method is significantly
better for wheeze and stridor than that of normal LS signal. Accord-
ing to the definition in [11], both stridor and wheeze are categorized
as continuous adventitious sound (CAS) which are characterized by
their periodic waveforms and dominant spectral components over
100 Hz, while normal LS is characterized by broad spectral noise.
It seems that the temporal variations are much less for CAS signals
than normal LS signals. This makes the difference in d(n) values
(see Eq. (12)) between CAS signals with and without HS signals
to be larger and it results in more accurate HS localization for the
slow-varying adventitious signals.

Except for moderate wheeze, it happens for all other types of
signals that the distributions and the standard deviations between the
RS signals with and without HS are quite similar which downgrades
the performance of the entropy based method in [5]. Therefore the
proposed approach outperforms the entropy based method in all sig-
nal conditions except the moderate wheeze (see Table 1).

Table 1. Comparison of the localization accuracy for different HS
localization methods in terms of the estimation error ǫ (%)

Type of Signal The proposed method The method in [5]

True HS 0.1± 2.50 2.1± 1.60

Normal Adult LS 1.8± 1.80 2.0± 0.87

Normal Infant LS 1.9± 5.43 2.3± 2.46

Stridor with Mild Wheeze 0.1± 1.70 1.7± 4.68

Stridor with Moderate Wheeze1.7± 1.05 0.8± 1.05

Polyphonic Wheeze 1.2± 2.06 2.6± 7.62

Monophonic Wheeze 0.6± 1.08 0.55 ± 1.21

4. CONCLUSION

This paper proposes a new approach for HS localization in different
types of single-channel RS signals based on an idea of time-varying
mean-shift. A multiscale mean shift function using the weighted log
likelihood ratios of selected wavelet features is proposed here cap-
turing the temporal dynamics of input RS signals. The performance
evaluated for synthesized real LS data and TBS data to validate the
proposed method to different types of RS signals shows promising
results. Since none of the existing HS localization methods works
well for different types of RS signals, the proposed approach is a
successful first attempt to open the exploration into a greater field.
The approach described in this paper is, at the best of our knowl-
edge, the first approach based on the idea of mean shift localization
for extracting HS in RS signals. However, the challenges remain
for our future work to localize abnormal HS (e.g. murmurs) in the
presence of discontinuous adventitious sounds (such as crackles)
due to its different dynamic nature.
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