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ABSTRACT 

In this paper we address single-trial binary classification of 

emotion dimensions (arousal, valence, dominance and 

liking) using electroencephalogram (EEG) signals that 

represent responses to audio-visual stimuli.  We propose an 

innovative three step solution to this problem: (1) in contrast 

to the typical feature extraction on the response-level, we 

represent the EEG signal as a sequence of overlapping 

segments and extract feature vectors on the segment level; 

(2) transform segment level features to the response level 

features using projections based on a novel non-parametric 

nearest neighbor model; and (3) perform classification on 

the obtained response-level features. We demonstrate the 

efficacy of our approach by performing binary classification 

of emotion dimensions on DEAP (Dataset for Emotion 

Analysis using electroencephalogram, Physiological and 

Video Signals) and report state-of-the-art classification 

accuracies for all emotional dimensions.  
 

Index Terms— EEG, emotion recognition 

 

1. INTRODUCTION 

Non-invasive methods for detecting health disorders have 

the potential for revolutionizing the field of medicine. As 

sensors such as electroencephalogram (EEG) become less 

intrusive and more affordable, their adoption in healthcare 

applications becomes more pervasive. One such application 

is detection of psychological health disorders such as mild 

Traumatic Brain Injury (mTBI), Post-traumatic stress 

disorder (PTSD), Depression, etc.   

Emotions in particular provide salient cues into an 

individual’s psychological status and have been an active 

area of research in modeling and analysis of human 

behavior. Research has focused on detecting emotions from 

a variety of sensory data including speech [1], text [2], facial 

expressions [3], physiological signals [4] and EEG [5-12].  

We present a novel approach for classifying emotion 

dimensions in EEG responses to audio-visual stimuli. First, 

instead of the accepted practice in EEG-based emotion 

recognition studies [5-12], where EEG features are extracted 

from the full response-to-stimuli, we segment EEG 

responses into multiple overlapping segments and extract 

features for each segment separately. This way each EEG 

response-to-stimuli is represented with multiple segment-

level feature vectors. We motivate this choice by dynamic 

nature of emotions and the fact that only parts of stimuli, 

and consequently EEG responses, are relevant for 

classification of emotion dimensions. Therefore, averaging 

introduced by feature extraction on the full response level 

can reduce discriminative potential of the features.  

Concatenation of the segment-level features into a 

response-level feature vector can lead to prohibitively high-

dimensional feature vectors, and poses an additional 

assumption that order of segments is important. Alternative 

segment fusion by calculation of statistical functionals of 

segment-level features over all segments-within-a-response 

introduces a loss of information when the features are highly 

non-stationary.  

In order to overcome the above limitations, we transform 

multiple segment-level feature vectors to a single response-

level feature vector in a manner that retains information 

relevant for classification task. First, for each segment 

feature-vector we find its    nearest neighbors (K in each 

class assuming binary classification problem) in the set of 

segment feature-vectors that do not correspond to the same 

response. Second, we transform the original segment-level 

feature vectors to 2K-dimensional multinomial distribution 

vectors, with probabilities obtained from 2K nearest 

neighbor distances using radial basis kernel with appropriate 

width. Third, we fuse all multinomial distribution vectors 

that correspond to a single response into a response-level 

feature vector in four ways: (1) Generating histograms of 

votes for the nearest neighbor class on the segment-level; 

(2) Calculating geometric means of all probability vector 

entries that correspond to distances to neighbors that belong 

to the same class; (3) Generating normalized histograms of 

values that probability vector coordinates take over all 

segments; and (4) Estimating parameters of Dirichlet 

distribution that generates all segment-level probability 

vectors. Finally, we concatenate all four features obtained 

by fusion into a response-level feature vectors and perform 

classification. 

Relation to prior work: From the application perspective 

work presented in this paper is related to several other 

research works on EEG-based estimation of emotion 

categories and dimensions [5-12]. From this set the most 

similar are studies [5, 6] that deal with the same dataset and 

the study [12] that employs audio-visual stimuli. As 

previously discussed, while these studies suggest feature 

extraction on the response-level, we propose a conceptually 

different feature extraction on the response segment-level.  

1286978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



The method we propose for transformation of the original 

segment-level features to the probability feature vectors is 

related to the Naïve Bayes nearest neighbor (NBNN) 

method [13]. Namely, restricting calculation of the 

geometric means (the second fusion feature) to probabilities 

corresponding only to the nearest neighbors, and picking a 

class with a smaller geometric mean is equivalent to NB-NN 

classification criterion.  

Finally, first two steps in the proposed transformation from 

segment to response-level feature vectors effectively 

perform projection of the original segment-level features 

using a non-parametric nearest neighbor model. This relates 

proposed method to the design of NB-NN kernel presented 

in [14]. However, while the NB-NN kernel measures 

distance between responses without notion of the response-

level feature vector we fuse segment-level projections to the 

response-level vectors explicitly.  

We conducted all experiments on the DEAP [4]. We 

performed single-trial binary classification for each of four 

emotional dimensions (arousal, valence, dominance and 

liking),d averaged classification accuracies over 32 subjects 

in the database and obtained the best reported accuracies on 

DEAP for each emotion dimension: arousal (68.4%), 

valence (76.9%), dominance (73.9%) and liking (75.3%).

    
The remainder of the paper is organized in the following 

way. Section 2 provides a description of the DEAP dataset 
and segment-level features we use. In Section 3 we describe 
the proposed method for segment-to-response feature 
transformation. In Section 4 we list used classification 
algorithms. Section 5 describes our experiments and 
summarizes key results. In Section 6 we conclude the paper 
and provide directions for future research. 
 

2. DATASET AND FEATURES 

We tested the proposed scheme for binary classification of 

emotion related categories (arousal, valence, dominance and 

liking) on DEAP (Dataset for Emotion Analysis using 

electroencephalogram, Physiological and Video Signals) 

[4]. DEAP contains 32-channel EEG, multiple peripheral 

physiological signals (galvanic skin response, blood 

pressure, breathing and heart rate, skin temperature and 

facial electromyography signals) and frontal facial videos 

recorded for 32 participants while they were watching 40 

one-minute long music videos. After the presentation of 

each stimulus, participants rated its content in terms of 

arousal, valence, likability, dominance (on scale from 1 to 9) 

and familiarity (on scale 1 to 5).  

In order to match experimental conditions for emotion 

dimension classification on DEAP in previously reported 

studies [5,6], we: (a) applied the same set of EEG signal 

pre-processing steps as in [5] (down-sampling to 128Hz, 

removing eye-blinking artefacts, bandpass filtering each 

channel to 4-45Hz interval and averaged channels to a 

common reference); and (b) transformed ratings for arousal, 

valence, dominance and liking to two categories 

corresponding respectively to rating intervals [1,5) (class 

“0”) and [5,9] (class “1”). In our experiments we used only 

features extracted from EEG signals. 

 

2.1 Segment-level EEG features  
We segment EEG response signals into multiple overlapped 

segments and extract the following features for each 

segment: spectral power in theta (4-8 Hz), slow alpha (8-10 

Hz), alpha (8-12 Hz), beta (12-30Hz) and gamma (30+ Hz) 

bands for each channel and spectral power differences 

between symmetric channel pairs for the same set of 

frequency bands.  

 

3. SEGMENT-LEVEL TO RESPONSE-LEVEL 

FEATURE TRANSFORMATION 

In this section we propose a three step method for 

transformation of segment to response-level feature vectors. 

For this purpose we introduce the following notation. Let 

   {    }   

    
 be a set of segment feature vectors for the 

response                . We assume that emotion labels 

assigned to a response apply to all segments within that 

response. 

In the first step, for each segment     we find its    

nearest neighbors (K in class”1” and K in class”0”) in the set 

of segments that do not belong to the same response. Let us 

denote distances (in ascending order) to neighbors in class 

“1” and “class “0”, respectively with 

(    
   )

   

 
and(    

   )
   

 
.   

 
Figure 1 Schematic representation of the proposed 

methodology. S1-S5 denote sections where the 

corresponding blocks are described. 
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In the second step we transform the original segment-level 

feature vector      to a multinomial distribution vector      

     
           

        
           

    , where     
     

     
     ⁄

. We set the 

distance kernel width    to the mean segment-to-nearest-

neighbor distance calculated over all segments that do not 

belong to      response [15]. Vector      preserves 

information about both class and distance properties of the 

neighborhood of the segment     .  

The probability vector      and can be interpreted as a 

projection of the segment-level feature vector to a non-

parametric nearest neighbor class model. Since in EEG 

applications we usually operate with high dimensional 

feature vectors, the proposed non-parametric model based 

projection is much more appealing than projections based on 

parametric models with high number of parameters (e.g. 

Gaussian mixture model).  

In the third step we fuse all segment-level probability 

vectors from a single response to a response-level feature 

vector. We propose to do fusion creating 4 types of 

response-level features, each with particular properties. 

(1) NN voting histogram: This feature represents 

relative number of segments which NNs belong to class 

“1”. The feature assures that classifier using it, when 

properly trained, should not perform worse than classifier 

that counts nearest neighbor votes over all segments within 

a response. Formally, we calculate this feature as in 

Equation 1. 
 

  
      

    
⁄ ∑  

    

   
(    

        
   )                                    

 

(2) Average segment-to-class distance: This 2-

dimensional feature (Equation 2) contains average distances 

from segments to their K nearest neighbors in the class “1” 

and K nearest neighbors in class “0”. If we compare 

distances to only 1-NN instead of K-NNs we get exactly 

decision criteria of the Naïve Bayes NN technique that is 

successfully used on image classification tasks [13].  
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         )
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(3) Histograms: We obtain this feature by calculating 

B-bin normalized histograms for each dimension of the 

segment-level probability vectors over all segments within a 

response. We denote this 2BK-dimensional vector with   
 . 

(4) Generating Dirichlet distribution: Under an 

assumption that the segment-level multinomial distributions 

are i.i.d. samples from a Dirichlet distribution (Equation 3) 

with parameters    (            ) we use these 

parameters as features. 
 

 (                 )  
∏  (    )  

   

 (∑     
  
   )

∏     

      
    

   

                 

It is possible to estimate the Dirichlet distribution 

parameters in the maximum likelihood sense [16], however 

for simplicity we have used the moment matching 

approximations [17]. Finally, we use we denote this 2K-

dimensional vector of parameters as   
 . 

 

4. RESPONSE-LEVEL CLASSIFICATION 

We represent each response with a single feature vector 

obtained by concatenation of features derived by fusion of 

segment level features,       
       

        
    

  . 
Further, we test three classifiers on the set of all response-

level feature vectors: (1) NB-NN classifier implemented by 

comparison of coordinates corresponding to the   
      

vector; (2) “NN voting”  classifier (compares numbers of 

segment level votes assigned to different classes, obtained 

by comparing the coordinate corresponding to   
     with 

0.5; and (3) support vector machine classifier [18] with 

radial basis kernel (RBF-SVM) operating on the full 

response-level feature vectors                .  

 

5. EXPERIMENTAL RESULTS 

After pre-processing steps listed in Section 2.1, and in order 

to experiment with different segment lengths, we segmented 

EEG signals using 1s, 2s, 4s and 8s windows with 1s shift 

creating respectively 60, 59, 57 and 53 segments per 

response. For each segment we extracted spectral powers in 

theta (4-8 Hz), slow alpha (8-10 Hz), alpha (8-12 Hz), beta 

(12-30Hz) and gamma (30+ Hz) bands for all channels and 

spectral power differences between symmetric channels (14 

pairs) for the same frequency bands. This creates 

5(32+14)=230-dimensional feature vector per segment.  

In all experiments we evaluated classification accuracies 

in a single-trial setup for each subject separately. In other 

words, we used leave-one-response-out cross validation 

scheme to obtain single subject accuracy. We report 

accuracies averaged over all subjects with standard 

deviations for four emotional categories: arousal (ARO), 

valence (VAL), dominance (DOM) and liking (LIK). We 

present results and findings for three experiments.  

In our first experiment we compared segment-level 

classification accuracies for different segment durations. 

Our goal was to see whether the classification accuracy 

benefits from the longer segments. We performed the 

segment level classification using combination of kernel 

principal component analysis (K-PCA) [19] dimensionality 

reduction and 1-NN classifier. We selected K-PCA 

dimension and the kernel width using cross-validation on 

the set of segments that belong to the training set with 

average 1-NN classification accuracy as the optimization 

criterion. For this purpose we searched the dimension-kernel 

width grid {{   }  {           }}  {         }.  

Interestingly, when we substituted 1-NN classifier with 

the linear SVM obtained results were effectively the same. 

Results presented in Table 1 show that we did not benefit 

from longer segment durations. 
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Table 1 Segment level classification accuracy averaged over 

subjects and standard deviation. Used method: combination of K-

PCA and 1-NN classifier.  

 VAL[%] ARO[%] DOM[%] LIK[%] 

1s 63.1(4.6) 59.5(7.6) 62.0(9.3) 64.1(11.1) 

2s 64.4(5.2) 60.6(8.1) 62.3(10.4) 64.0(10.1) 

4s 61.1(7.9) 60.3(8.0) 61.3(9.8) 64.5(12.0) 

8s 60.9(7.4) 59.8(8.3) 61.1(10.6) 64.1(12.6) 
 

In the second experiment we fused segment-level features 

into response-level feature vectors by calculating statistical 

functionals (mean, standard deviation, min, max, range, 

mode, median, skewness and kurtosis) for each segment-

level feature vector dimension over all segments in a 

response. Further, we classified the obtained 2070-

dimensional              response-level feature vectors 

using combination of K-PCA and 1-NN classifier. As in the 

previous experiment we have optimized K-PCA parameters 

using cross-validation on the training set. In this case we 

used average response-level 1-NN classification accuracy as 

the optimization criterion. We present results for this 

experiment in Table 2 and consider them a baseline for 

comparison with the proposed method.  
 

Table 2 Response level classification accuracy averaged over 

subjects and standard deviation. Used method: fusion of segment-

level feature vectors using statistical functionals followed by 

combination of K-PCA and 1-NN classifier  

 VAL[%] ARO[%] DOM[%] LIK[%] 

1s 54.7(10.6) 58.8(11.6) 59.7(15.4) 60.1(15.2) 

2s 54.4(10.7) 59.5(8.5) 60.0(13.9) 60.2(14.2) 

4s 53.8(10.8) 58.8(11.7) 61.3(15.0) 58.7(11.9) 

8s 54.9(8.2) 59.5(11.0) 59.1(14.0) 59.8(11.4) 
 

In the third experiment, we tested performance of three 

classifiers (Section 4) based on the proposed segment-to-

response transformation method (Section 3). We used K-

PCA dimensionality reduction as a preprocessing step for 

each classifier. For the first two classifiers, NB-NN and “NN 

voting” we optimized K-PCA parameters in the same way 

as for the first two experiments using cross-validation 

classification performances on the training set as the 

optimization criterion. For the third classifier RBF-SVM we 

have used the same set of parameters as for the “NN 

voting”. We made this sub-optimal choice to simplify the 

training since for the RBF-SVM classifier we also had to 

optimize the parameter C that controls trade-off between 

training errors and the SVM margin size and the kernel 

width  . We transformed original segment-level feature 

vectors to the response-level feature vectors (Section 4) 

using K=5 nearest neighbors and optimized C and   

parameters on the grid {         }  {         } using cross-

validation on the training set. We present classification 

accuracies averaged over all subjects in Table 3.  

From the results in Table 3 we can see that the RBF-SVM 

classifiers outperform NB-NN, “NN voting” and the 

baseline classifier from the second experiment (Table 2) 

when applied with the identical segment duration. On all but 

LIK classification task for 2s segments and ARO 

classification task for 8s the RBF-SVM is better than the 

second best classifier (“NN voting”) for the same segment 

duration with at least 5% significance. Overall, the best 

performance on ARO, VAL and DOM categories is 

achieved by RBF-SVM classifiers on 1s and 2s segments.  

Additional t-tests confirm that these classifiers outperform 

all other classifiers, independently of the segment duration, 

with 5% significance. Most importantly, all classifiers based 

on the proposed segment-to-response transformation 

perform significantly better than: (a) the baseline classifier 

based on a more basic scheme for fusion of segment-level 

feature vectors (Table 2); and (2) the best reported results 

[4] on DEAP (VAL(57.6%), ARO(62.0%), LIK(55.4%))  

obtained by the response-level feature extractions. 
 

Table 3 Response level classification accuracy averaged over 

subjects and standard deviation. Used methods: (A) K-PCA 

followed by NB-NN; (B) K-PCA followed by “NN voting”; (C) K-

PCA followed by segment-to-response feature transformation and 

RBF-SVM  

 VAL[%] ARO[%] DOM[%] LIK[%] 

1s 

A 62.9(6.4) 64.5(11.6) 62.9(15.9) 65.0(12.7) 

B 74.5(8.2) 66.0(12.4) 68.7(16.8) 72.7(12.1) 

C 76.9(6.4) 68.4(12.1) 73.9(11.1) 75.3(10.6) 

2s 

A 68.0(8.7) 66.3(11.6) 65.0(16.6) 66.0(13.5) 

B 73.1(9.2) 66.4(11.9) 68.8(17.3) 71.5(13.3) 

C 76.0(6.6) 68.9(12.0) 73.2(12.6) 72.7(12.4) 

4s 

A 68.4(7.8) 64.8(11.0) 65.6(17.3) 67.6(13.3) 

B 68.5(9.8) 66.2(12.1) 66.3(17.3) 70.7(13.1) 

C 73.0(9.1) 69.1(10.5) 71.3(14.3) 72.7(13.2) 

8s 

A 63.8(8.3) 63.6(11.9) 62.8(15.6) 66.9(13.9) 

B 66.3(10.1) 64.6(11.4) 65.3(13.0) 68.1(14.7) 

C 68.0(10.2) 65.6(10.9) 70.4(12.8) 73.6(12.0) 

 

6. CONCLUSIONS AND FUTURE WORK 
In this paper we presented state-of-the-art results for 

binary emotion dimension classification tasks (valence, 
arousal, dominance, liking) on DEAP. These results imply 
that the proposed segment-level feature extraction and the 
segment-to-response level feature transformation methods 
represent an appealing choice for EEG emotion recognition.  

Future work will focus on two directions that can bring 
improvements in EEG emotion recognition: (1) 
Identification of the most informative task-dependent filter 
banks; and (2) Discovering the most relevant 
stimuli/response segments by correlating audio-visual 
stimuli content and EEG responses, or by correlating EEG 
responses produced by multiple subjects to the same stimuli. 
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