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ABSTRACT

Non-parametric hemodynamic response function (HRF)
estimation in noisy functional near-infrared spectroscopy
(fNIRS) plays an important role when investigating the tem-
poral dynamics of a brain region response during activations.
Assuming the drift Lipschitz continuous; a new algorithm for
non-parametric HRF estimation from the oxygenated (HbO)
and deoxygenated (HbR) fNIRS time-series is derived in
this paper. The proposed algorithm estimates the HRF by
applying a first order differencing to the fNIRS time series
samples. It is shown that the proposed HRF estimator is

√
N

consistent. Its performance is assessed using both simulated
and a real fNIRS data set obtained from a motor activity
experiment. The application results reveal that the proposed
HRF estimation method is efficient both computationally and
in terms of accuracy.

Keywords: fNIRS, hemodynamic response function, first
order differencing, consistent estimation.

1. INTRODUCTION

Functional near-infrared spectroscopy (fNIRS) is a unique
in-vivo imaging technology that simultaneously measures
the concentration changes of oxygenated (HbO) and de-
oxygenated (HbR) hemoglobin. It has shown great poten-
tial to analyze cognitive functions during ecologically valid
paradigms as it offers a flexible environment for measuring
functional brain activity [1]. It provides a balance between
temporal and spatial resolution unlike in-the-field neuroimag-
ing techniques such as fMRI and EEG. Furthermore, the
independent observation of HbO and HbR in fNIRS mea-
surements and access to their sum as total hemoglobin (HbT)
better characterizes the governing mechanism of neuronal
dynamics than the blood oxygen level-dependent (BOLD)
fMRI signal alone [2].
Primary source of signal contrast in fNIRS measurements is
HbO and HbR that are negatively correlated during neural
activations [3] through a mechanism known as neurovascular
coupling [4]. Increase in neuronal activity increases HbO and
decreases HbR. The changes in tissue oxygenation associated

with neural activity modulate the absorption and scattering of
the infrared light through the brain tissue. In principle, HbO
and HbR have different attenuation spectra with characteristic
properties in the optical window of the near-infrared spectral
range 680 − 900 nm [5, 4]. Therefore, different character-
izing wavelengths are used in the optical window in fNIRS
to differentiate non-invasively between the two qualitative
measures associated with the neural activity.
The HbO and HbR as a first approximation are modeled as
a convolution of the experimental paradigm characterizing
the stimulus by the hemodynamic response function (HRF),
modeling the impulse response of the neurovascular system
[6] that is assumed to be linear time-invariant [7].
HRF shape vary substantially across regions as is recently
revealed by [8] in an fMRI study, apart from the understood
notion of its variability across tasks and subjects. Therefore,
accurate HRF estimation is essential to characterize the tem-
poral dynamics of brain region response during activations,
and the region involvement in functional and effective con-
nectivity [9]. Based on generalized linear model (GLM), the
available methods for HRF estimation from fMRI data can be
adapted to fNIRS time-series [10]. Among them, parametric
HRF estimation methods offer limited flexibity by a priori
choosing a non-linear function of certain parameters that are
estimated by least squares [11]. Nonparametric estimation
methods allow more flexibility and offer accuracy in the esti-
mation by inferring the HRF at each time sample [12].
Besides the noise, the estimation of the HRF is further com-
plicated by the presence of drift arising from long term phys-
iological effects and instrumental instability. Nonparametric
methods introduced so far include a parametric part to infer
the systematic drift, commonly modeled by polynomials and
splines [13] and functions from the discrete cosine trans-
form [12, 14]. However, the relatively un-restrained nature
of fNIRS data acquisition system make it more tolerant of
head motion than fMRI scanners giving rise to severe motion
related artifacts that substantially degrade signal quality [1].
Effective HRF estimation requires a modeling approach that
efficiently account for the variability of the baseline drift.
Though the drift is considered as a nuisance component, its
appropriate parametrization is needed for efficient HRF esti-
mation.
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In this paper, a nonparametric component is used to model
the drift and a semiparametric model is used to describe the
fNIRS responses [15]. Nonparametric regression models do
not assume any a priori model structure and allows the rep-
resentation of broad class of drift signals. Furthermore, they
avoid the selection or the estimation of the nuisance covari-
ates to approximate the drift.
Using the assumption that the drift is a superposition of phys-
ical and physiological effects that can be considered Lipschitz
continuous, a

√
N consistent HRF estimation procedure from

the HbO and HbR fNIRS responses measured in a channel is
proposed in this paper. This procedure is based on a first or-
der differencing approach [16][17] applied to semiparametric
model. Numerical performances of the proposed estimation
procedure are illustrated on both simulated and real fNIRS
data.

2. MODEL OF THE FNIRS SIGNAL

The HbO and HbR signals measured in channel Ci over the
time course of N acquired samples during an fNIRS experi-
ment can be represented by a discrete random sequence yi =
(yi1, ..., yiN )⊤. Each signal can be described as the sum of
three components: an experimentally induced controlled ac-
tivation response in channel i, an uncontrolled confound part
or a baseline drift (including possible unknown nuisance ef-
fects) and a noise term [12, 14, 18]. In matrix form, fNIRS
signal can be described with the following model

yi = Xθi + Pφi + ǫi, ǫi ∼ N(0, σ2
ǫ IN ), (1)

where X is a known (N × p) matrix representing the exper-
imental design matrix consisting of the lagged stimulus co-
variates. The (N × q) drift matrix P , is a nuisance covariate
matrix that takes a potential drift and any other nuisance ef-
fect into account. The elements of φi that are attached to each
measured response in channel i are the corresponding coeffi-
cients. The parameter vectors θi and φi are unknown p and q

dimensional vectors representing the unknown HRF samples
to be estimated and the nuisance variables respectively. In
practice the dimension q can be estimated using model selec-
tion techniques [19, 20, 21]. ǫi represents independent iden-
tically distributed Gaussian white noise N(0, σ2

ǫ IN ) with an
unknown variance σ2

ǫ .
The parametric component Pφi is very useful for providing
a parsimonious description of the baseline drift, but it is used
at the risk of introducing a modeling bias. Alternatives that
offer more flexibility in approximating the drift do exist, and
can be obtained by using an unknown drift matrix P [18] or a
nonparametric component [15]. The latter is used in this pa-
per. In the matrix-vector form, the model of the fNIRS signal
in this case is

yi = Xθi + fi + ǫi, (2)

where fi = (fi(t1), ..., fi(tN ))⊤ is a discrete sequence in-
dependent of X representing the uncontrolled baseline drift
including other unknown nuisance effects. Rescaling the
experiment time to one shows that the spacing between two
consecutive samples is of the order 1

N
.

In comparison to (1), model (2) does not require the parametriza-
tion of the baseline drift. It offers more flexibility than the
linear model for representing the baseline drift while main-
taining the explanatory power of the parametric model for the
activation response measured in channel i.

3. PROPOSED HRF ESTIMATION PROCEDURE

In what follows, we propose a simple, but reliable and ef-
fective HRF estimation procedure. A first order difference-
based estimate [16, 17] is used for estimating θi. For j =
1, ..., N − 1

yi,j+1−yi,j = fi(tj+1)−fi(tj)+(Xj+1−Xj)θi+ei,j , (3)

where the stochastic error ej = ǫj+1 − ǫj . Using the as-
sumption that the drift is a superposition of instrumental and
physiological effects that are Lipschitz continuous, we have
the approximation

fi(tj+1)− fi(tj) ≃ O

(

1

N

)

and
yi,j+1 − yi,j ≃ (Xj+1 −Xj)θi + ei,j . (4)

In this case the least squares estimate of θi satisfies

θi = argminθi

N−1
∑

j=1

(

yi(j+1) − yij − (Xj+1 −Xj)θi
)2

(5)

and is given by

θ̂i =





N−1
∑

j=1

(Xj+1 −Xj)
⊤(Xj+1 −Xj)





−1

.

N−1
∑

j=1

(Xj+1 −Xj)
⊤(yi,j+1 − yi,j) (6)

The proposed HRF estimate (6) is
√
N consistent. This

is described in the Appendix. It is easily implementable and
avoid the selection of nuisance covariates for modeling the
baseline drift. Its effectiveness is guaranteed by the

√
N con-

sistency of θ̂i in (6).
While our focus is the HRF estimation θi, the proposed
method also generates an estimation of the drift fi. Using the
above HRF estimate θ̂i, let

zi = yi −Xθ̂i. (7)

1282



Then, zi = (zi1, ..., ziN )⊤ can be viewed as sampled from
the model

zi ≃ fi + ǫi. (8)

This is a denoising problem in which we can employ a soft-
thresholding technique to estimate fi from zi [22]. Since the
convergence rate of θ̂i is faster than the wavelet shrinkage
estimator [22], the errors in estimating θi are negligible when
estimating fi.

4. RESULTS

4.1. Simulations

For simulating fNIRS time-series measurements, sixty time-
series of 500-points each were simulated. For each time-
series the stimulus sequence is a realization of a random
event-related stimulus (random onsets arrival time), which
is convolved with the original HRF θ0 (canonical HRF used
by SPM software [23]) that is normalized to one depicting
HbO response. For negative correlated HbR response hav-
ing smaller amplitude than HbO response [5], an inverted
un-normalized HRF was considered for the same paradigm
as shown in figure 1. Low frequency drifts f0 = Pφi were
added to both the simulated fNIRS time-series. The drift ma-
trix P is an orthogonal matrix, which consists of orthonormal
basis of functions generated from discrete cosine transform.
The coefficients φi were drawn from a normal distribution,
N(0, 8.5). For generating the representative fNIRS drift
in this simulation, the cosine basis were chosen covering
Mayer waves (arterial blood pressure) centered around 0.1
Hz, head movement artifacts represented by basis in the
range [0.0038 ∼ 0.015Hz], and respiration noise centered
around 0.25 Hz [24]. These basis are linearly mixed with
strength determined by weights from the drift coefficient vec-
tor φi. The dimension of the drift coefficients vector was kept
to q = 8. The proposed method is compared with the ordi-
nary least squares HRF estimator for different noise variances
(σ2

ǫ ). Investigation of the HRF is assessed using the quadratic
error as:

η
θ̂m

=
1

p− 1
‖ θ̂m − θ0 ‖2

where m ∈ {proposed, ordinary least squares} and θ0 repre-
sents the true unknown HRF with p number of samples.
For a noise variance σ2

ǫ = 0.1, the quadratic-error for the pro-
posed HRF estimator is 2.4 x 10−3 in comparison to 7.0 x
10−3 for ordinary least-squares. These results reveal that the
proposed approach reduce the quadratic estimation error and
offers improvement over the least squares method leading to
more accurate HRF estimation from fNIRS data.

4.2. Real data

After approval of the study protocol by the Stanford Univer-
sity Institutional Review Board, written informed consent was
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Fig. 1. Estimated HRFs using ordinary least squares method
for drifted HbO and HbR fNIRS time-series for σ2

ǫ = 0.05
(left). Estimated HRFs using proposed method for drifted
HbO and HbR fNIRS time-series for σ2

ǫ = 0.05 (right)

obtained from each participant to participate in this study.
The aim of the experiment was to investigate the dynamics
of oxygenated and deoxygenated hemoglobin during a motor
activity. The experiment was performed on ten healthy young
adults (mean age 26.9, four males) who performed a finger-
tapping task with no head motion (FO), finger tapping with
small head motion (FS) and finger tapping with big head mo-
tion (FB). Each finger tapping task consisted of 10 alternating
tapping and resting epochs. Each tapping epoch lasted 10 s
and each resting epoch lasted 20 s. Before the start of the ex-
periment, participants were asked to sit relaxed and let their
right hand rest naturally on their right knee. When the word
“Tap” appeared on the screen, they began tapping all four fin-
gers on their right hand at a rate of 3-4 taps/s till a cue on the
screen alerted them to stop. Further details of the experiment
can be found in [1].
In this study, we investigated the FS-FB blocks for the con-
centration change of HbO and HbR for one of the subjects. In
these blocks, apart from the finger tapping task, further event-
related instructions were given to the participants to move
their head in the indicated directions (forward, left, back-
ward and right) supplemented either by “small” for FS-block
or “big” for FB-block while kept on performing the tapping
task. Each of the four motion instruction occurred 10 times
within each block, on average every 9 s (1 s standard devi-
ation) asynchronous with the alternating finger tapping and
resting epochs. For “big” head motions, participants were
asked to move their head as far as possible without moving
their shoulders; for “small” head motions, they were asked to
move half way. Furthermore, they were asked to move their
head at a natural speed.
The concentration change of HbO and HbR was measured us-
ing ETG-4000 (Hitachi Medical, Japan) Optical Topography
system with a sampling frequency of 10 Hz and characterizing
wavelengths in the range (695-830 nm). Two 4x4 measure-
ment patches (each 24 channels) provided by Hitachi were
used to measure the task-related hemodynamics activity. For
the expected activation in the left motor cortex by the known
right hand finger tapping task, the patches were attached to a
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swimming cap in a manner that covered the bilateral motor
cortex of each subject.
The resulting activated HbO and HbR signals from the left
motor cortex were approached for HRF estimation with both
the ordinary least squares and the proposed method. Results
are shown in Figure 2 for two of the channels with differ-
ent HbO and HbR hemodynamics triggered by underlying
neuronal activity in the left motor cortex of the brain. In
comparison to ordinary least squares, the proposed method
is well-adapted to correctly estimate the two different quali-
tative measures from real fNIRS data.
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Fig. 2. a-b) acquired real fNIRS time-series. Black represent
HbR, Blue represent HbO. c) Estimated HRFs using ordinary
least squares method for channel 5 (top) and channel 12 (bot-
tom) d) Estimated HRFs using proposed method for channel
5 (top) and channel 12 (bottom)

5. CONCLUSION

In this paper we have proposed a simple, reliable and effec-
tive nonparametric HRF estimation procedure using the linear
least square estimator. Its implementation is easy and avoids
the selection of nuisance covariates [14][12] or their estima-

tion [18]. The proposed method is based on a first order dif-
ferencing method. Using this HRF estimate, the baseline drift
can be estimated using a wavelet thresholding technique ap-
plied to the residuals obtained by removing the estimated in-
duced activation response from the fNIRS times series. The
derived HRF estimate is proven to be consistent. The ef-
fectiveness and performance of the proposed HRF estimation
procedure was illustrated on simulated data and tested on real
fNIRS data.

Appendix

For j = 1, ..., N − 1, (4)

yi,j+1−yi,j = (Xj+1−Xj)θi+fi(tj+1)−fi(tj)+ei,j , (9)

can be written in a vector form

di = Rθi + gi + ei (10)

where di = (yi,2−yi,1, ..., yi,N −yi,N−1)
⊤ is an (N−1)×1

vector, R = [X2 −X1; ...;XN −XN−1]
⊤ is an (N − 1)× p

matrix, gi = (f2 − f1, ..., fN − fN−1)
⊤ is an (N − 1) × 1

vector and ei = (ǫ2 − ǫ1, ..., ǫN − ǫN−1)
⊤ is an (N − 1)× 1

vector.
From (6), we have

(R⊤R)−1R⊤zi = θi + (R⊤R)−1R⊤gi + (R⊤R)−1R⊤ei.
(11)

We use the following asymptotic identifiability assumptions:
A1- The matrix

CN =
1

N

N−1
∑

j=1

(Xj+1 −Xj)
⊤(Xj+1 −Xj) =

1

N
R⊤R

converge toward an invertible matrix C.
A2- The function f is Lipschitz continuous.
The central limit theorem induces the asymptotic normality
of the terms

√
N(R⊤R)−1R⊤ei. Its mean is given by

E
(√

N(R⊤R)−1R⊤ei
)

= 0

and the covariance is

E
(

N(R⊤R)−1R⊤eie⊤i R(R⊤R)−1
)

= σ2
ǫC

−1

Using assumption A2, the first moment of the second term of
(11) is of order

E
(√

N(R⊤R)−1R⊤gi
)

= O

(

1

N

)

(12)

and using Cauchy-Schwartz inequality its variance is of order

E
(

N(R⊤R)−1R⊤gig
⊤

i R(R⊤R)−1
)

= O

(

1

N2

)

.(13)

Therefore for sufficiently large N , we have
√
N(θ̂i − θi) →

N(0, σ2
ǫC

−1).
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