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ABSTRACT

Human brain is known to be one of the most complex biological sys-
tems and understanding the functional connectivity patterns to dis-
tinguish between normal and disrupted brain behavior still remains a
challenge. Previous studies focus on analyzing functional connectiv-
ity averaged over a certain time and frequency window which is gen-
erally not sufficient to address the time-varying evolution of the con-
nectivity patterns. In this paper, we propose a framework to describe
the dynamic properties of functional connectivity in the brain. The
proposed approach is based on constructing time-varying connec-
tivity graphs from multichannel electroencephalogram (EEG) data,
using subspace analysis to detect network-wide changes, identifying
key event intervals and then extracting representative networks that
describe the connectivity in each event interval. This framework is
evaluated for EEG data, containing error-related negativity (ERN)
component related to cognitive control. For each time interval, the
statistically significant connectivity patterns are presented to illus-
trate the dynamic nature of functional connectivity.

Index Terms— Dynamic graphs, time-varying functional brain
networks, dynamic network summarization

1. INTRODUCTION

In recent years, there has been a growing interest in studying the
functional connectivity of the human brain, which is defined as the
statistical dependencies among remote neurophysiological events
[1]. Functional connectivity can be inferred from different neu-
roimaging data such as the electroencephalography (EEG), which
offers high temporal resolution needed to quantify the time-varying
relationships between neuronal populations [2]. Various measures,
such as cross-correlation, Granger causality and phase synchrony,
have been used for inferring the functional relationships among
different brain sites [3]. However, these measures are limited to
quantifying bivariate relationships and cannot reveal the collective
behavior of complex brain networks.

Due to the need for understanding the underlying topologies of
brain networks, a new and multidisciplinary approach to the study
of complex systems based on graph theory has become popular [4].
Graph theory offers a way to quantify the multivariate relationships
among neuronal activations across brain regions. For instance, Watts
and Strogatz have shown that graphs with many local connections
and a few random long distance connections, called ‘small-world’
networks, have both clustered (’cliquish’) interconnectivity within
groups of nodes (like regular lattices) and a short path length be-
tween any two nodes (like random graphs) [5]. Recently, there have
been multiple studies which have shown small-world patterns in
functional networks of healthy subjects [6]. Several studies have also
shown how brain pathology, such as schizophrenia and Alzheimer’s
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diseases, can be related to disrupted small-world architecture [6].
Currently, graph theoretical features of functional networks, such
as clustering coefficient, path length, small world parameter and
modularity [4], are routinely applied to quantify the organization of
these networks. However, the current studies are limited to static
brain networks and thus, neglect possible time-varying properties of
the topologies. A single graph is not sufficient to represent the con-
nectivity patterns of the brain and can be considered as an unreliable
snapshot of functional connectivity.

More recently, understanding the dynamic evolution of func-
tional brain networks has been of interest. Current studies of dy-
namic functional brain networks are limited to extracting graph the-
oretic features such as modularity, small-world parameter and effi-
ciency from each graph in the series and track the evolution of these
parameters [7, 8, 9]. However, these approaches lose the spatial in-
formation provided by the graphs and cannot identify which parts of
the brain contributed to the observed changes in the network. In re-
cent years, dynamic network analysis has attracted some attention in
the signal processing community. Approaches to detect anomalies
or distinct subgraphs in large, noisy background [10] and to track
dynamic networks [11, 12] have been proposed. For instance, in
[13], direction of the principal eigenvector of a matrix based on the
graph is tracked over time, and an anomaly is detected if the direc-
tion changes by more than some threshold. Tracking dynamic net-
works [11] using shrinkage estimation, or simple approaches such as
sliding window or exponentially weighted moving averaging have
also been proposed for inferring long-term information or trends
[14]. However, these methods either do not offer summarization of
the time-varying network patterns or do not reduce the multitude of
graphs into a few representative networks.

In this paper, the goal is to reduce information from multiple
connectivity graphs across time into a few meaningful time inter-
vals over which the temporal variation of network topology is min-
imum and to represent these intervals with key graphs that best de-
scribe the connectivity patterns. The proposed work builds on the
prior work on time-varying network analysis such that significant
network-wide changes are tracked and the evolution of connectivity
patterns are summarized. Subspace analysis using principal com-
ponent analysis (PCA) is employed to project the high dimensional
time-varying connectivity information to a lower dimensional space,
which is equivalent to decorrelating the network in the spatial do-
main. Hence, the resulting key networks contain only the informa-
tion related to the signal subspace.

2. BACKGROUND

2.1. Notation

We use uppercase bold letters, such as X , to denote a matrix and
lowercase bold letters, such as x, to denote a vector, where X(t)
and x(t) represent the matrix and vector at time point t, respec-
tively. Xi,j(t) represents the entry of matrix X(t) at the ith row
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and j th column, whereas xi(t) denotes the ith entry of vector x(t).
∥x(t)∥p = (

∑k
i=1 |xi(t)|p)1/p is the lp norm of a k-dimensional

vector x(t).

2.2. Network Change Detection Using PCA

PCA is a dimensionality reduction technique that results in a com-
pact representation of a multivariate data set by projecting the data
onto a lower dimensional subspace defined by a set of new axes
called principal components (PCs). Each PC points in the direc-
tion of maximum variance remaining in the data, given the variance
already accounted for in the preceding components. Lakhina et al.
were the first to use PCA as a tool to detect network traffic anoma-
lies, in particular for computer network data streams, and PCA based
network wide anomaly detection has been extensively investigated in
[15, 16].

Let X = [x(1), . . . ,x(m)] be a n × m network traffic time-
series data matrix, centered to have zero mean, where x(t) is an n-
dimensional data vector at time point t. Then, the set of n principal
components, {vi}ni=1, are defined as:

vi = arg max
∥v∥2=1

∥∥∥∥∥
(
X −

i−1∑
j=1

Xvjv
T
j

)
v

∥∥∥∥∥ (1)

Solution of Eq. (1) is given by the eigenvectors of the covariance ma-
trix, C = 1

m
XXT , which form an n×n matrix V = [v1, . . . ,vn]

having associated eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn arranged in de-
creasing order.

It has been observed that although the original data spans a high
dimensional space, normal traffic patterns lie in a low dimensional
signal (normal) subspace spanned by the first l PCs corresponding
to the l largest eigenvalues and anomalous behavior lies in a noise
(anomalous) subspace spanned by the remaining (n − l) PCs [15].
Hence, the data at time point t, x(t), can be decomposed as:

x(t) = xSig(t) + xNoi(t) (2)

where xSig(t) and xNoi(t) correspond to the signal and noise com-
ponents, respectively, and can be computed as:

xSig(t) = PP Tx(t) and xNoi(t) = (I − PP T )x(t) (3)

where P = [v1, . . . ,vl] consists of the eigenvectors with the largest
l eigenvalues and I is the identity matrix. When there is a large
change in the noise component, xNoi(t), an anomalous network wide
behavior is declared [15]. By performing statistical testing using
a Q-statistic on the squared prediction error, ∥xNoi(t)∥2, one can
determine whether an anomaly is observed or not [15].

3. METHODS

3.1. Forming Time-Varying Graphs Using Phase Synchrony

In order to identify event intervals and infer the evoked network
activity within each interval, we first need to obtain time-varying
graphs representing the interactions across different brain sites. The
nodes of the graphs correspond to different brain regions and edges
correspond to the connectivity strengths. In this paper, we quantify
the connectivity using a recent phase synchrony measure based on
RID-Rihaczek distribution [17]. This measure has been shown to be
more robust to noise and to provide better resolution as discussed
in [17]. The first step in quantifying phase synchrony is to estimate
the time and frequency dependent phase, Φi(t, ω), of a signal, si,

as: Φi(t, ω) = arg
[

Ci(t,ω)
|Ci(t,ω)|

]
where Ci(t, ω) is the complex RID-

Rihaczek distribution1:

Ci(t, ω) =

∫ ∫
exp

(
−
(θτ)2

σ

)
︸ ︷︷ ︸

Choi-Williams kernel

exp(j
θτ

2
)︸ ︷︷ ︸

Rihaczek kernel

Ai(θ, τ)e
−j(θt+τω)dτdθ

(4)

and Ai(θ, τ) =
∫
si(u + τ

2
)s∗i (u − τ

2
)ejθudu is the ambiguity

function of si. The phase synchrony between nodes i and j at time
t and frequency ω is computed using ‘Phase Locking Value’ (PLV):

PLVi,j(t, ω) =
1

L

∣∣∣∣∣
L∑

k=1

exp
(
jΦk

1,2(t, ω)
)∣∣∣∣∣ (5)

where L is the number of trials and Φk
i,j(t, ω) = |Φi(t, ω) −

Φj(t, ω)| is the phase difference estimate between the two nodes for
the kth trial.

Let {G(t)}t=1,2,...,T be a time sequence of graphs where G(t)
is an N × N weighted and undirected graph corresponding to the
functional connectivity network at time t for a fixed frequency or
frequency band, T is the total number of time points and N is the
number of nodes within the network. The time-varying edge values
are quantified by the average PLV within a frequency band and at a
certain time as:

Gi,j(t) =
1

Ω

ωb∑
ω=ωa

PLVi,j(t, ω) (6)

where Gi,j(t) ∈ [0, 1] represents the connectivity strength be-
tween the nodes i and j within the frequency band of interest,
[ωa, ωb], and Ω is the number of frequency bins in that band.
Since the graphs are undirected and symmetric, we create vec-
tors, {x(t)}t=1,2,...,T , to equivalently represent these graphs where
x(t) is an

(
N
2

)
-dimensional column vector obtained by stacking the

columns of the upper triangular portion of G(t).

3.2. Event Interval Detection

Once the time-varying graphs and corresponding column vectors,
[x(1), . . . ,x(T )], are obtained, we need to identify network-wide
changes to determine time intervals which may correspond to the
underlying neurophysiological events. We define an event interval
as a time window during which the similarity between consecutive
graphs is maximized. Since the spatial correlation in the network,
such as long term trends in connectivity, may attenuate the effect of
individual short-term variations or the unique features of each edge,
the edge values are first projected to a lower dimensional signal sub-
space through an orthogonal projection operator, P . P is obtained
from the l eigenvectors of the covariance matrix,
C = 1

T
[x(1), . . . ,x(T )][x(1), . . . ,x(T )]T , corresponding to the

largest l eigenvalues such that:∑l
j=1 λj∑(N2 )
j=1 λj

× 100 ≥ 90 (7)

Once the edge values are projected, i.e., P Tx(t), the similarity be-
tween consecutive time points needs to be quantified. Common ap-
proaches to quantifying similarity include correlation, l2 or l∞ norm
or information theoretic measures [18]. These measures either favor

1The details of the RID-Rihaczek distribution and the corresponding syn-
chrony measure are given in [17].
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edges with large values, e.g., l∞ norm favors edges with maximum
difference, or require large amount of data for computing empirical
histograms, e.g., information theoretic measures. For this reason,
in this paper we propose tracking changes based on the normalized
projected vectors, [y(1), . . . ,y(T )], where y(t) = PT x(t)

∥PT x(t)∥2
. The

time-varying angle of these new set of vectors indicates the degree
of alignment of the unique short-term features of the edge values
with the direction of the principal eigenvectors. The angular similar-
ity, at = yT (t − 1)y(t), between these vectors is tracked to detect
event intervals. If there is an abrupt decrease in the angular similar-
ity between the subsequent direction vectors, this would indicate a
significant change in the network patterns. Hence, we detect event
intervals as follows:

Et =

{
1, if at < µt − 3σt

0, if at ≥ µt − 3σt

(8)

where a change detection algorithm based on adaptive thresholding
is used. An event boundary is detected, Et = 1, at time t depending
on the deviation of at from the mean, µt =

1
δ

∑δ
k=1 at−k, by three

σt, σt =
√

1
δ

∑δ
k=1(at−k − µt)2. The length of the moving aver-

age window, δ, can be chosen based on the sampling frequency and
total number of time samples, T .

3.3. Summarizing Signal Subspace for Key Graph Estimation

After determining the event intervals, our goal is to form key graphs
which best summarize the particular intervals. An ideal key graph
should describe the particular interval with minimal redundancy. In
this paper, we eliminate the spatial correlation in the network, i.e.,
noise subspace, within that interval and consider only the features of
the edges aligned with the principal eigenvectors.

Let [x(i), . . . ,x(i + m − 1)] be the set of m vectors obtained
from the time-varying graphs that compose a detected event interval.
The corresponding projection matrix, Pi, is constructed using the
eigenvectors corresponding to the largest l eigenvalues of the sam-
ple covariance matrix formed from [x(i), . . . ,x(i + m − 1)] such
that 90% of the total energy is captured similar to section 3.2. For
each time point within the particular event interval, signal subspace
component is extracted as:

xSig(t) = PiP
T
i x(t) t = i, . . . , i+m− 1 (9)

For each event interval, we compute a weighted mean vector:

xSig =

∑i+m−1
t=i SNRItxSig(t)∑i+m−1

t=i SNRIt
(10)

where SNRIt is a time-dependent signal to noise ratio index:

SNRIt =
∥PiP

T
i x(t)∥2

∥(I − PiPi(t)T )x(t)∥2
=

∥xSig(t)∥2
∥xNoi(t)∥2

(11)

The xSig in equation (9) weighs time points with higher SNR more,
thus emphasizing signal subspace activity. The corresponding key
graph is obtained by reshaping xSig such that it constitutes the upper
triangular part of the symmetric key graph for the particular interval.

4. RESULTS

4.1. EEG Data

The proposed framework is applied to a set of EEG data contain-
ing the error-related negativity (ERN). The ERN is a brain poten-
tial response that occurs following performance errors in a speeded

reaction time task usually 25-75 ms after the response [19]. Pre-
vious work [20] indicates that there is increased coordination be-
tween the lateral prefrontal cortex (lPFC) and medial prefrontal cor-
tex (mPFC) within the theta frequency band (4-8 Hz) and ERN time
window (25- 75 ms), supporting the idea that frontal and central elec-
trodes are functionally integrated during error processing. EEG data
from 62-channels was collected in accordance with the 10/20 system
on a Neuroscan Synamps2 system (Neuroscan, Inc.). A speeded-
response flanker task was employed, and response-locked averages
were computed for each subject. All EEG epochs were converted to
current source density (CSD) using published methods [21]. In this
paper, we analyzed data from 90 subjects corresponding to the error
responses.
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Fig. 1. Event interval detection: 6 event intervals are identified
which correspond to the stimulus processing (-1000 to -179 ms),
pre-ERN (-178 to 0 ms), ERN (1 to 94 ms), post-ERN (95 to 281
ms), Pe (282 to 462 ms) and inter-trial (463 to 1000 ms) intervals,
respectively. The subjects respond to the stimulus at time 0 ms and
the red lines indicate E(t) = 1.

4.2. Network-wide Change Detection

For each subject, time-varying graphs, Gq(t), t = 1, . . . , 256, for
the qth subject are computed using Eq. (6) where the number of
nodes, N , is equal to 62, the frequency band of interest is the theta
band (4-8 Hz) and the sampling frequency is 128 Hz. We compute a
mean time-varying graph sequence, Ḡ(t), over all subjects as:

Ḡ(t) =
1

90

90∑
q=1

Gq(t) (12)

and the event interval detection algorithm is applied to this average
sequence, Ḡ(t), where the length of the moving average window,
δ = 50 milliseconds, is 5% of the sampling period and chosen such
that both the abrupt changes in the connectivity patterns are detected
and over-smoothing is avoided. We detected 6 event intervals using
Eq. (8) which are consistent with the speeded reaction time task and
correspond to the stimulus processing (-1000 to -179 ms), pre-ERN
(-178 to 0 ms), ERN (1 to 94 ms), post-ERN (95 to 281 ms), Pe (282
to 462 ms) and inter-trial (463 to 1000 ms) intervals, respectively, as
shown in Fig. 1.

The initial event interval corresponds to the complex processing
of the stimulus before making a response. The Pre-ERN and Post-
ERN intervals index activity around the incorrect motor response.
The ERN and Pe intervals are detected successfully, where the Pe
(error-positivity) interval corresponds to positive evoked potential
similar to the well-known P300 and is observed subsequent to the
incorrect response.
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(a) Stimulus Processing (b) Pre-ERN

(c) ERN (d) Post-ERN

(e) Pe (f) Inter-trial

Fig. 2. For each event interval, a key graph is obtained using the
framework described in section 3.3. We compared the estimated
key graphs with the ones obtained from the surrogate time-varying
graphs and statistically significant interactions with p < 0.01 and
p < 0.001, are shown in blue and red colors, respectively.

4.3. Key Graph Estimation

For each interval, subspace summarization approach described in
section 3.3 is employed to estimate xSig , which is used to construct
the corresponding symmetric key graph. We compared the esti-
mated key graphs with the ones estimated from 2000 surrogate time-
varying graphs generated by randomly reshuffling the edge weights.
Fig. 2 shows the statistically significant edges with p < 0.01 and
p < 0.001 in blue and red colors, respectively. Due to the com-
plex activity associated with the error commission, ERN interval
has much more significant connections compared to the Pre-ERN
and Post-ERN intervals as expected. Moreover, the central elec-
trode (FCz) and the frontal electrode sites (F5, FZ, F2 and F4) have
significant connections with p < 0.001, which is consistent with
previously observed interactions in theta band between medial pre-
frontal cortex (mPFC) and lateral prefrontal cortex (lPFC) during

error-related cognitive control processes [20]. The remaining inter-
vals do not include such interactions among frontal and central sites.

We also compared the connectivity values, between FCz elec-
trode and the remaining 61 electrodes, within the key graphs for
Pre-ERN, ERN and Post-ERN intervals. Welch’s t-test at 5% sig-
nificance level is applied to identify if FCz has stronger connectivity
during the ERN interval compared to the Pre-ERN and Post-ERN
intervals. For both comparisons, Pre-ERN vs ERN and Post-ERN vs
ERN, the null hypothesis is rejected, where FCz has a larger mean
connectivity for the ERN interval, indicating that the central elec-
trode has significantly larger connectivity with the rest of the brain.
Moreover, we compared the connectivity values for Pre-ERN and
Post-ERN and found no significant difference between the connec-
tivity values from these intervals.

5. CONCLUSIONS

In this paper, we proposed a new framework to describe the dynamic
evolution of functional brain networks. The proposed approach is
based on detecting the network-wide changes, identifying the cor-
responding event intervals and representing these intervals with key
graphs. The key graphs are obtained by projecting the connectivity
data in the event interval onto a lower dimensional signal subspace
thus discarding the spatial correlation among the edges, such that
the key graph would summarize the particular interval with minimal
redundancy. Application to real EEG data containing event related
potentials shows the effectiveness of the proposed framework in de-
termining the event intervals and describing network activity with a
few number of representative networks.

Future work will concentrate on exploring alternative decompo-
sition techniques for subspace analysis and different ways to form
the key graphs through weighting, which may improve the perfor-
mance of dynamic network summarization. We will also extend the
proposed approach to compare the dynamic nature of functional net-
works for error and correct responses to get a more complete under-
standing of cognitive control. Finally, different group analysis meth-
ods will be considered to account for the variability across individual
subjects.

6. ACKNOWLEDGEMENTS

We would like to thank Dr. Edward Bernat from Florida State Uni-
versity for sharing his EEG data with us.

7. REFERENCES

[1] K. Friston, “Functional and effective connectivity: A review,”
Brain Connectivity, vol. 1, no. 1, pp. 13–36, 2011.

[2] C. Stam, “Nonlinear dynamical analysis of EEG and MEG:
review of an emerging field,” Clinical Neurophysiology, vol.
116, no. 10, pp. 2266–2301, 2005.

[3] E. Pereda, R. Quiroga, and J. Bhattacharya, “Nonlinear mul-
tivariate analysis of neurophysiological signals,” Progress in
Neurobiology, vol. 77, no. 1-2, pp. 1–37, 2005.

[4] M. Valencia, J. Martinerie, S. Dupont, and M. Chavez, “Dy-
namic small-world behavior in functional brain networks un-
veiled by an event-related networks approach,” Physical Re-
view E, vol. 77, no. 5, p. 050905, 2008.

[5] D. Watts and S. Strogatz, “Collective dynamics of small-world
networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[6] C. Stam, B. Jones, G. Nolte, M. Breakspear, and P. Schel-
tens, “Small-world networks and functional connectivity in

1275



Alzheimer’s disease,” Cerebral Cortex, vol. 17, no. 1, pp. 92–
99, 2007.

[7] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro,
“Time-varying graphs and dynamic networks,” Ad-hoc, Mo-
bile, and Wireless Networks, vol. 6811, pp. 346–359, 2011.

[8] P. Mucha, T. Richardson, K. Macon, M. Porter, and J. Onnela,
“Community structure in time-dependent, multiscale, and mul-
tiplex networks,” Science, vol. 328, no. 5980, pp. 876–878,
2010.

[9] M. Chavez, M. Valencia, V. Latora, and J. Martinerie, “Com-
plex networks: new trends for the analysis of brain connectiv-
ity,” Arxiv preprint arXiv:1002.0697, 2010.

[10] B. Miller, M. Beard, and N. Bliss, “Matched filtering for sub-
graph detection in dynamic networks,” in IEEE Statistical Sig-
nal Processing Workshop (SSP), 2011, pp. 509–512.

[11] K. Xu, M. Kliger, and A. Hero, “A shrinkage approach to track-
ing dynamic networks,” in IEEE Statistical Signal Processing
Workshop (SSP), 2011, pp. 517–520.

[12] K. Xu, M. Kliger, and A. Hero III, “Adaptive evolutionary clus-
tering,” arXiv preprint arXiv:1104.1990, 2011.

[13] T. Ide and H. Kashima, “Eigenspace-based anomaly detec-
tion in computer systems,” in Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2004, pp. 440–449.

[14] H. Tong, S. Papadimitriou, P. Yu, and C. Faloutsos, “Proximity
tracking on time-evolving bipartite graphs,” in Proc. of SDM,
2008, pp. 704–715.

[15] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-
wide traffic anomalies,” in ACM SIGCOMM Computer Com-
munication Review, vol. 34, no. 4. ACM, 2004, pp. 219–230.

[16] L. Huang, X. Nguyen, M. Garofalakis, M. Jordan, A. Joseph,
and N. Taft, “In-network pca and anomaly detection,” Ad-
vances in Neural Information Processing Systems, vol. 19, p.
617, 2007.

[17] S. Aviyente and A. Mutlu, “A time-frequency-based approach
to phase and phase synchrony estimation,” IEEE Transactions
on Signal Processing, vol. 59, no. 7, pp. 3086–3098, 2011.

[18] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in
data streams,” in Proceedings of the Thirtieth International
Conference on Very Large Data Bases, vol. 30, 2004, pp. 180–
191.

[19] J. R. Hall, E. M. Bernat, and C. J. Patrick, “Externalizing psy-
chopathology and the error-related negativity,” Psychological
Science, vol. 18, no. 4, pp. 326–333, 2007.

[20] J. Cavanagh, M. Cohen, and J. Allen, “Prelude to and resolu-
tion of an error: EEG phase synchrony reveals cognitive con-
trol dynamics during action monitoring,” The Journal of Neu-
roscience, vol. 29, no. 1, pp. 98–105, 2009.

[21] J. Kayser and C. Tenke, “Principal components analysis of
laplacian waveforms as a generic method for identifying ERP
generator patterns: I. evaluation with auditory oddball tasks,”
Clinical Neurophysiology, vol. 117, no. 2, pp. 348–368, 2006.

1276


