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ABSTRACT

Phase synchronization has been proposed as a plausible mechanism
to quantify both linear and nonlinear relationships between neuronal
populations and to assess functional brain connectivity. However,
bivariate phase synchrony is not sufficient for complex system anal-
ysis such as the brain where the bivariate relationships do not always
reflect the underlying network structure. Recently, multivariate ex-
tensions of bivariate phase synchrony has been of interest in investi-
gating the interactions within a group of oscillators. Current exten-
sions are based on either averaging all possible pairwise synchrony
values or eigen decomposition of a matrix of bivariate synchroniza-
tion indices to estimate multivariate synchrony using the entropy of
the normalized eigenvalues. All of these approaches are sensitive
to the accuracy of the bivariate synchrony indices, cause loss of in-
formation, computationally complex and are indirect ways to quan-
tify the multivariate synchrony. In this paper, we propose a novel
and direct measure to estimate the multivariate phase synchrony by
forming direction vectors in a multidimensional hyperspherical co-
ordinate system. The proposed method is evaluated through appli-
cation to electroencephalogram (EEG) data containing error-related
negativity (ERN) related to cognitive control. We compare the new
measure with existing methods and show its effectiveness in quanti-
fying multivariate synchronization of different brain regions.

Index Terms— Multivariate phase synchrony, Global phase
synchronization, Functional brain connectivity

1. INTRODUCTION

Cooperative behavior of chaotic dynamics of complex systems is rel-
evant in many fields of research, from climactic processes and elec-
tric circuits to human cardio-respiratory system and neuroscience.
Usually, this complex dynamics is analyzed through bivariate mea-
sures of signal interdependence such as traditional cross-correlation
and spectral coherence techniques or nonlinear measures such as
mutual information. More recently, tools from nonlinear dynam-
ics, in particular, phase synchronization have received much atten-
tion since they offer a way of extracting information on the interde-
pendence of weakly interacting systems that cannot be obtained by
traditional methods [1, 2, 3]. Phase synchronization of chaotic oscil-
lators occurs in many complex systems including the human brain,
where both linear and nonlinear dependencies are quantified though
bivariate phase synchrony using noninvasive measurements such as
electroencephalogram (EEG) data [4].

Classically, synchronization of two signals is understood as
adjustment of their rhythms due to interaction, referred to as
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phase locking, which occurs when Φi,j(t, ω) = |Φi(t, ω) −
Φj(t, ω)|mod2π < constant, and Φi,j(t, ω) is the generalized
phase difference between signals i and j at time t and frequency ω.
Two steps are needed for quantifying phase synchrony. First, instan-
taneous phase of each signal is estimated at a particular frequency
of interest and second, a statistical criterion is used to quantify the
degree of phase locking. The first step has been addressed using the
analytic signal concept through the Hilbert transform, convolution
with a complex wavelet function, commonly the Morlet wavelet [5],
or the recently proposed RID-Rihaczek complex time-frequency
distribution [3]. For the second step, the deviation of the empirical
distribution of the relative phase difference from a uniform distri-
bution is usually quantified using indices based on either Shannon
entropy or circular variance of phases [6].

Recently, phase synchronization of a group of oscillators, which
is referred to as global or multivariate phase synchronization, has
been of interest for understanding the group dynamics and char-
acteristic behavior of complex networks [7]. Contrary to the bi-
variate phase synchrony, which is limited to pairwise relationships,
multivariate synchrony captures the global synchronization patterns
quantifying the degree of interactions within a group of oscillators.
Existing approaches to multivariate phase synchronization rely on
the computation of the whole set of pairwise synchrony values. A
preliminary approach is the partial synchrony adapted from partial
coherence to reveal the indirect interactions among the oscillators
within a network [8]. However, this method still infers bivariate re-
lationships and cannot quantify group dynamics. Recently, cluster
analysis has been proposed to maximize group connectivity within
each cluster while minimizing the connectivity between clusters [9,
10]. Allefeld et al. have proposed a mean-field approach to ana-
lyze EEG data, where each signal is contributing to a single clus-
ter to a different extent [11]. The existence of a single synchro-
nization cluster is not a reasonable assumption since the underly-
ing clustering structure of brain networks, which usually consist of
multiple clusters, cannot be inferred. In order to address this lim-
itation, an approach based on the eigenvalue decomposition of the
pairwise bivariate synchronization matrix has been proposed [12].
Multiple synchronization clusters are detected based on the num-
ber of eigenvalues greater than 1. The strength of each cluster de-
pends on the magnitude of its associated eigenvalue and the corre-
sponding eigenvectors account for the internal structure. However, it
has recently been shown in cases where there are clusters of similar
strength that are slightly synchronized with each other, the assumed
one-to-one correspondence between eigenvectors and clusters is not
realistic [13]. One of most prominent and commonly used measures
for quantifying multivariate synchrony is based on the spectral de-
composition of the bivariate synchronization matrix and is known as
the S-estimator [7, 14]. However, the accuracy of this measure is
affected by the accuracy of the bivariate synchrony estimates.
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All of these prior approaches depend on the estimation of bivari-
ate phase synchrony values and offer an indirect and a limited way
to estimate the multivariate synchrony within a network. With re-
spect to prior work, in [15], we proposed a novel and direct method,
which is referred to as ‘Hyperspherical Phase Synchrony’ (HPS),
to compute the multivariate phase synchronization within a group
of oscillators. HPS is a direct extension of ’Phase Locking Value’,
which is the most prominent index of bivariate phase synchrony [3]
and offers a novel way to exploit the circular variance of phase differ-
ences among multiple oscillators to compute global synchronization.
We applied HPS to simulated signal models using Hilbert transform
for phase estimation. Simulation results showed improved results in
terms of robustness to noise and lower computational complexity of
the proposed method compared to the existing methods. The con-
tributions of this paper is two fold. First, we use the RID-Rihaczek
distribution [3] to allow definition of a time and frequency depen-
dent multivariate phase synchrony measure. Second, we apply the
proposed HPS measure to a set of EEG data containing event re-
lated potentials and compare its performance with the S-estimator in
determining functional connectivity networks of the human brain.

2. BACKGROUND

2.1. Phase Estimation

In order to quantify bivariate or multivariate phase synchrony among
multiple time-series, one needs to extract the time and frequency
dependent phase of each signal. For this purpose, we propose to
use a new time-varying phase estimation method based on the Re-
duced Interference Rihaczek (RID-Rihaczek) distribution belonging
to Cohen’s class [3]. Compared to the existing measures, such as the
Hilbert transform or the continuous wavelet transform using Morlet
wavelet, RID-Rihaczek based phase estimator is robust to noise and
offers phase estimates having uniformly high time-frequency resolu-
tion with less bias. Therefore, it performs superior at detecting actual
synchrony within a group of oscillators [3]. In this paper, time and
frequency dependent phase, Φi(t, ω), of a signal, xi(t), is estimated

as: Φi(t, ω) = arg
[

Ci(t,ω)
|Ci(t,ω)|

]
where Ci(t, ω) is the complex RID-

Rihaczek distribution of xi(t):

Ci(t, ω) =

∫ ∫
exp
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−
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σ

)
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2
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∫
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2
)x∗

i (u − τ
2
)ejθudu is the ambiguity

function of xi(t).

2.2. Bivariate Phase Synchrony

Once the instantaneous phases of signals, x1(t) and x2(t), and the
corresponding phase difference, Φ1,2(t, ω) = |Φ1(t, ω)−Φ2(t, ω)|,
are estimated, one needs to employ a statistical criterion to quantify
the degree of phase locking [3]. The most prominent index of bivari-
ate phase synchronization is the ‘Phase Locking Value’ (PLV), based
on circular variance of the distribution of the phase differences:

PLV1,2(t, ω) =
1

L

∣∣∣∣∣
L∑

k=1

exp
(
jΦk

1,2(t, ω)
)∣∣∣∣∣ (2)

where L is the number of trials and Φk
1,2(t, ω) is the time and

frequency dependent phase difference estimate for the kth trial.

The phase difference between the signals, Φk
1,2(t, ω) ∈ [0, 2π), is

mapped onto the unit circle by forming a direction vector and this
index is a measure of how the relative phase is distributed over the
unit circle. The relative phase will occupy a small portion of the cir-
cle if the two signals are synchronized, which results in a larger PLV
value. PLV is equal to 1 for perfect synchronization and approaches
to zero for independent oscillators.

2.3. Multivariate Phase Synchrony

For a network consisting of N nodes, bivariate synchrony has been
extended to multivariate synchronization using S-estimator [7, 14],
which exploits the eigenvalue spectrum of the N ×N bivariate syn-
chronization matrix, {PLVi,j(t, ω)}i,j=1,...,N , as follows:

S(t, ω) = 1 +

∑N
m=1 λm log(λm)

log(N)
(3)

where S(t, ω) quantifies the group synchrony at time t and fre-
quency ω, PLVi,j(t, ω) is the bivariate synchrony between the ith

and j th nodes and λms are the N normalized eigenvalues.
This index is a complement to the entropy of the normalized

eigenvalues of {PLVi,j(t, ω)}i,j=1,...,N and the more disperse the
distribution of the eigenvalues, the higher the entropy would be.
If the network is completely synchronized, i.e., PLVi,j(t, ω) =
1 ∀ i, j, then the maximum eigenvalue will be equal to N whereas
the remaining eigenvalues will be equal to zero which results in
S(t, ω) = 1, indicating perfect multivariate synchrony.

However, this measure is an indirect way of estimating the mul-
tivariate phase synchrony since it needs the computation of

(
N
2

)
bi-

variate synchrony values to compute the global synchrony within the
group. Furthermore, computational complexity is also an inherent
drawback of the S-estimator since it requires the eigenvalue decom-
position of the bivariate synchrony matrix at each time and frequency
point.

3. HYPERSPHERICAL PHASE SYNCHRONY

Bivariate phase synchrony is based on the circular variance of the
two-dimensional direction vectors on a unit circle (1-sphere), ob-
tained by mapping the phase differences, {Φk

1,2(t, ω)}k=1,...,L,
between the two time-series onto a Cartesian coordinate system.
If the circular variance of these direction vectors is low, the time-
series are said to be locked to each other. In this paper, we pro-
pose an extension of this idea to the multivariate case and de-
fine {θk1 (t, ω), θk2 (t, ω), . . . , θkN−1(t, ω)} as the (N − 1) angular
coordinates at time t and frequency ω for the kth trial, where
θki (t, ω) = Φk

i (t, ω) − Φk
i+1(t, ω) is the phase difference between

the ith and (i+1)th time series within a group of N oscillators1. We
map these (N−1) angular coordinates onto an N -dimensional space
by forming direction vectors in an N -dimensional hyperspherical
coordinate system. For any natural number N , an N − 1-sphere of
radius r is defined as the set of points in (N )-dimensional Euclidean
space which are at distance r from a central point, where the radius
r may be any positive real number. The set of coordinates in N -
dimensional space, γ1, γ2, . . . , γN , that define an (N − 1)-sphere is
represented by:

r2 =
N∑
i=1

(γi − ci)
2 (4)

1Note that the sequence of the phases when computing the angular co-
ordinates does not have any effect on the circular variance of the resulting
direction vectors.
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where c = [c1, . . . , cN ] is the center point and r is the radius. In
this paper, r = 1 and the center point is the origin. Fig. 1 shows an
example of a 2-sphere where the 3-dimensional direction vectors are
shown by the line crossings.

Fig. 1. Line crossings, such as the black dots, indicate the sampled
3-dimensional direction vectors based on uniform angular sampling
of a 2-sphere.

Using the N−1 angular coordinates, {θk1 (t, ω), . . . , θkN−1(t, ω)},
we define the set of N Cartesian coordinates on a unit N − 1 sphere
which forms a direction vector, Γk(t, ω) = [γk

1 (t, ω), . . . , γ
k
N (t, ω)],

as2:

γk
1 (t, ω) = cos (θk1 (t, ω)),

γk
2 (t, ω) = sin (θk1 (t, ω))× cos (θk2 (t, ω)),

γk
3 (t, ω) = sin (θk1 (t, ω))× sin (θk2 (t, ω))× cos (θk3 (t, ω)),

...

γk
N−1(t, ω) = sin (θk1 (t, ω))× · · · × sin (θkN−2(t, ω))× cos (θkN−1(t, ω)),

γk
N (t, ω) = sin (θk1 (t, ω))× · · · × sin (θkN−2(t, ω))× sin (θkN−1(t, ω)),

(5)

Therefore, for N signals, we define the hyperspherical phase syn-
chrony (HPS) as:

HPS(t, ω) =
1

L

∣∣∣∣∣
∣∣∣∣∣

L∑
k=1

Γk(t, ω)

∣∣∣∣∣
∣∣∣∣∣
2

(6)

where HPS(t, ω) is the multivariate synchronization value at time t
and frequency ω, ∥.∥2 is the Euclidean norm and L is the number of
trials. Note that HPS is equivalent to PLV for a network consisting
of two signals. In the case of perfect multivariate phase synchroniza-
tion of the network, HPS is equal to 1 and equals to zero when the
oscillators are independent.

4. APPLICATION TO EEG DATA

4.1. EEG Data

In order to evaluate the performance of the proposed measure in
quantifying the multivariate synchronization across different brain
regions, we use a set of EEG data containing the error-related nega-
tivity (ERN). The ERN is an event-related brain potential that occurs
following performance errors in a speeded reaction time task [16]

2In this paper, to generate a suitable set of direction vectors, unit hyper-
spheres are sampled based on uniform angular sampling methods.

and is observed as a sharp negative trend in EEG recordings which
typically peaks around 75-80 ms after the error response. Previous
work indicates that there is increased phase synchrony associated
with ERN for the theta frequency band (4-8 Hz) and ERN time
window (25- 75 ms) between frontal and central electrodes versus
central and parietal [17]. Cavanagh et al. have shown that lateral
prefrontal cortex (lPFC) activity is phase-synchronous with medial-
frontal theta, supporting the idea that medial prefrontal (mPFC)
and lPFC regions are functionally integrated during error processing
[18]. Therefore, in this paper, application of the proposed measure to
EEG data is based on the hypothesis that the medial-frontal region
will play a central functional role during the ERN, and will have
significant integration with frontal areas within the theta frequency
band. Therefore, multivariate phase synchronization is expected
to be higher for frontal and central electrode group compared to
parietal and central one.

EEG data from 62-channels was collected in accordance with
the 10/20 system on a Neuroscan Synamps2 system (Neuroscan,
Inc.)3. A speeded-response flanker task was employed, and response-
locked averages were computed for each subject. Before applying
the proposed measure, all EEG epochs were transformed to current
source density (CSD) to accentuate local activity and distal activity
(e.g. volume conduction), using published methods [19, 20]. In this
paper, we analyzed data from 32 subjects corresponding to the error
responses.

4.2. Results

The proposed hyperspherical multivariate synchrony measure is ap-
plied to both the frontal (F1, F2, F3, F4)-central (FCz) electrode
group and the central parietal (CP1, CP2, CP3, CP4)-central (FCz)
group. For each subject, we focused on the ERN interval, [ta, tb],
and theta frequency band, [ωa, ωb], and compared the mean HPS
value, HPS = 1

T×Ω

∑tb
t=ta

∑ωb
ω=ωa

HPS(t, ω), where T and Ω are
the total number of time and frequency bins, respectively, to iden-
tify if the frontal-central group has stronger multivariate synchro-
nization compared to the parietal-central group. For all subjects,
frontal-central electrode group resulted in significantly larger HPS
values compared to the parietal-central group using a Welch’s t-test
at 1% significance level. This result is consistent with previously ob-
served interactions in the theta band between medial prefrontal cor-
tex (mPFC) and lateral prefrontal cortex (lPFC) during error-related
negativity [18]. Figs. 2(a) and 2(b) show the mean HPS values com-
puted over all subjects at each time and frequency point within the
ERN interval and theta band for the two electrode groups. More-
over, we compared the performance of HPS with the S-estimator
in discriminating between the multivariate synchronization of the
two groups. Figs. 2(c) and 2(d) show the mean S-values computed
over all subjects. We found that the HPS values for frontal-central
group in Fig. 2(a) are significantly larger compared to parietal-
central group in Fig. 2(b) with p < 0.01. On the other hand, the
S-values in Fig. 2(c) are significantly larger compared to parietal-
central group with p < 0.05. Therefore, the proposed measure
yields more significant differences and outperforms S-estimator in
discriminating between the multivariate synchronization of the two
groups.

We also compare our proposed measure with S-estimator for
detecting significant multivariate synchronization for the frontal-
central electrodes using an ROC curve. In this paper, for each
subject, a true positive (detection) is determined when the mean

3The authors would like to acknowledge Dr. Jason Moser from Michigan
State University for sharing his EEG data with us.
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Fig. 2. The mean HPS ((a) and (b)) and S-values ((c) and (d)) com-
puted over all subjects at each time and frequency point within the
ERN interval and theta band for the two electrode groups.

multivariate synchrony value within the ERN interval and theta
band for the frontal-central electrodes is larger than the thresh-
old, whereas a false alarm is defined when the mean multivariate
synchronization for the parietal-central group is larger than the
threshold. Fig. 3 shows the ROC curves for HPS and S-estimator.
One can clearly see that HPS performs better than the S-estimator in
detecting frontal-central multivariate synchronization.
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5. CONCLUSIONS AND FUTURE WORK

In this paper, a novel and direct method is proposed to compute the
multivariate phase synchrony for quantifying global coupling across
different brain sites. Application to real EEG data containing the
ERN supports the effectiveness of the proposed measure in revealing
the increased phase synchrony associated with ERN between frontal
and central electrodes versus central and parietal.

Future work will concentrate on exploring different sampling
point-sets such that the resulting direction vectors are distributed uni-
formly on the N -sphere since the set of direction vectors based on

uniform sampling in the angular coordinate system results in nonuni-
formly distributed direction vectors as shown in Fig. 1. The pro-
posed measure will also be applied to EEG data containing event re-
lated potential due to both error and correct responses to get a more
complete understanding of cognitive control. In the current applica-
tion to EEG data, one limitation of the proposed measure is that the
groups of oscillators to be analyzed have to be identified a priori and
an exhaustive search to find synchronization clusters would be com-
putationally complex. Therefore, it would be valuable to first use
preprocessing methods, such as eigenvalue decomposition or mea-
sures of association and complexity, which can help us to discover
the underlying networks.
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