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ABSTRACT

This paper addresses the problem of inferring voltage traces
and ionic channel activity from noisy intracellular recordings
in a neuron. A particle filtering method with optimal im-
portance density is proposed to that aim, with the benefits
of on-line estimation methods and Bayesian filtering theory.
The method is applied to an inaccurate Morris-Lecar neuron
model without loss of generality. Simulation results show the
validity of the approach, where it is observed that theoretical
estimation bounds are attained.

Index Terms— Neuroscience, dynamical systems, parti-
cle filtering.

1. INTRODUCTION

The membrane potential, obtained from intracellular record-
ings, is one of the most valuable signals of neurons’ activ-
ity. Most of the neuron models have been derived from fine
measurements and allow the progress of “in silico” experi-
ments. However, other interesting quantities informing about
the neuron’s intrinsic activity or synaptic connections [1, 2]
are either costly to obtain (channel blocking and clamping
techniques [3, 4]) or impossible to measure explicitly with to-
day’s techniques. Thus, estimation methods can be very use-
ful, mostly those that can be applied to obtain time evolution
on-line; that is, avoiding the need of repetitions that could
be contaminated by neuronal variability. In this paper, as a
first step, we concentrate on methods to extract intrinsic ac-
tivity of ionic channels, namely the probabilities of opening
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and closing channels. To this purpose, we consider a neu-
ron model and, using a particle filtering (PF) algorithm with
optimal importance density, we recover both the membrane
potential and the activity of the potassium channel with the
minimum attainable error.

The remainder of the paper is organized as follows. In
Section 2 we introduce a neuron model to motivate the work,
namely the model named after Morris and Lecar. The practi-
cal problem is stated in Section 3 and the resulting PF solution
explained in Section 4. The main causes of model inaccura-
cies are enumerated in Section 5, as well as hints to account
for them in the method. Section 6 discusses computer simu-
lations, with comparison to the theoretical estimation bounds,
and Section 7 concludes the paper.

2. SINGLE-NEURON MODEL WITH IONIC
CHANNELS

From the myriad of existing single-neuron models, we con-
sider the Morris-Lecar model proposed in [5]. The model can
be related (see [6]) to the Ina,p, + Jx-model (pronounced per-
sistent sodium plus potassium model). The dynamics of the
neuron is modeled by a continuous-time dynamical system
composed of the current-balance equation for the membrane
potential, v = v(t), and the K+ gating variable 0 < n =
n(t) < 1, which represents the probability of the K™ ionic
channel to be active. Then, the system of differential equa-
tions is

C’mv = 7IL - ICa - IK + Iapp (1)
R @)
Tn (V)

where (), is the membrane capacitance and ¢ a non-dimensional
constant. I,,, represents the (externally) applied current.
The leakage, calcium, and potassium currents are of the
form Iy, = gr(v — EL), Ica = gcaMoo(v)(v — Eca), and
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Ix = gkn(v — Ex), respectively. g¢r, gca, and gk are
the maximal conductances of each current. FEy, Ec,, and
Fx denote the Nernst equilibrium potentials, for which the
corresponding current is zero, a.k.a. reverse potentials.

The dynamics of the activation variable m is considered
at the steady state, and thus we write m = mes(v). On
the other hand, the time constant 7, (v) for the gating vari-
able n cannot be considered that fast and the correspond-
ing differential equation needs to be considered. The formu-

lae for these functions is me(v) = % - (1 + tanh[”‘_/g/l]),
Neo (V) = %-(1+tanh[”;¥3]), and 7, (v) = 1/(cosh[“27v‘4/3 ),

which parameters Vi, V5, V3, and V; can be measured exper-
imentally [6].

The knowledgeable reader would have noticed that the
Morris-Lecar model is a Hodgin-Huxley type-model with the
usual considerations, where the following two extra assump-
tions were made: the depolarizing current is generated by
Ca27 ionic channels (or Na* depending on the type of neuron
modeled), whereas hyperpolarization is carried by KT ions;
and that m = my,(v). The Morris-Lecar model is very pop-
ular in computational neuroscience as it models a large vari-
ety of neural dynamics while its phase-plane analysis is more
manageable as it involves only two states [7].

3. PROBLEM STATEMENT

The problem investigated in this paper considers recordings
of noisy voltage traces to infer the hidden gating variables of
the neuron model, as well as filtered voltage estimates. Data
is recorded at discrete time-instants at a sampling frequency
fs = 1/T,. The problem can thus be posed in the form of a
discrete-time, state-space model. The observations are

Y ~ N(UuU;t) ) (3)
with og’t modeling the noise variance due to the sensor or
the instrumentation inaccuracies when performing the exper-
iment. To provide comparable results, we define the signal-
to-noise ratio (SNR) as SNR = P;/P,, with P; being the
average signal power and P,, = oZﬂt the noise power.

On the other hand, we have models for the evolution
of the voltage-traces and the hidden variables of a neuron.
For instance, the Morris-Lecar model presented in Section
2. The unknown state vector in this case is x; = (vg, ng)” .
Notice that the presented neuron model is defined by a set
of continuous-time, ordinary differential equations (ODE).
However, we are interested in expressing the model in the
general, sequential form x; = fy(x¢—1) + v4, where v, ~
N(0,3, ;) is the process noise which includes the model
inaccuracies. The covariance matrix X, ; is used to quantify
our confidence in the model f; : {vi—1,n:—1} > {v, e}
If we focus on the Morris-Lecar model, the resulting discrete
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version of the ODE system in (1)-(2) is:

T,
Ve = Vg1 — a (9r.(ve—1 — Ex)
+ gcaMeo (Ut—l)(vt—l - ECa)
+  gxne—1(vi—1 — Ex) — Lapp) 4)
AU R 5)

Tn (Utf 1)

4. SEQUENTIAL ESTIMATION OF GATING
VARIABLES BY PARTICLE FILTERING

Bayesian filtering involves the recursive estimation of states
x; € R™ given measurements y; € R™v at time ¢ based on
all available measurements, y1. = {y1, ...,y }. To that aim,
we are interested in the filtering distribution p(x;|y1.¢), which
can be recursively expressed as

X. Xt | Xt —
p(xelyre) = Pyt /t)]?( t|Xe—1)
P(yt|y1:t71)

p(Xt—l\yl;t—l) ) (6)

with p(y:|x;) and p(x;|x;_1 ) referred to as the likelihood and
the prior distributions, respectively. Unfortunately, (6) can
only be obtained in closed-form in some special cases and in
more general setups we should resort to more sophisticated
methods. In this paper we consider PF to overcome the non-
linearity of the model [8].

PFs approximate the filtering distribution by a set of
N weighted random samples, forming the random measure
{x,(fi)7 wfi) }N . These random samples are drawn from the

1=

importance density distribution, (),
X~ w1 1) ™)

and weighted according to the general formulation

() o0 PUXe PO xi%)

We o X Wi @) ) - ®
(% [X0i—15 Y1:t)

The importance density from which particles are drawn

is a key issue in designing efficient PFs. It is well-known

that the optimal importance density is TI'(Xt‘X(()Zzl_lg Y1) =

p(xt|x§ijl, y¢), in the sense that it minimizes the variance
of importance weights. Weights are computed using (8) as
(4) (4)

wy X wy 1p(yt|xgl). This choice requires the ability to

draw from p(xt|x£1_)1, y¢) and to evaluate p(yt|x2(f_>1). In gen-
eral, the two requirements cannot be met and one needs to
resort to suboptimal choices. However, we are able to use the
optimal importance density since the state-space model as-
sumed here is Gaussian, with nonlinear process equations but
related linearly to observations [9]. The equations are:

POty ye) = N (), B 0) ©)



with

pd, = . (2;1]%()‘?—)1)‘?%) (10)
ol

So0o= (Sih4o,21) (11)

and the importance weights can be updated using

plyelx) = N(bfi(x) b " 407 ), (12)
with h = (1,0). The PF provides a discrete approxima-
tion of the filtering distribution of the form p(xt|y1.t) =
>y w”5(x, — x\7), which gather all information from x,
that the measurements up to time ¢ provide. For instance, the
minimum mean square error estimator can be obtained as

N
%= wi'x{ (13)
i=1

where X; = (%, ﬁt)T. Recall that the method discussed in
this section could be easily adapted to other neuron models
simply substituting by the corresponding transition function
ft and constructing the state vector x; conveniently.

As a final step, PFs incorporate a resampling strategy to
avoid collapse of particles into a single state point. Resam-
pling consists in eliminating particles with low importance
weights and replicating those in high-probability regions [10].

5. MODEL INACCURACIES

The proposed estimation method highly relies on the fact that
the neuron model is known. This is true to some extend, but
most of the parameters in the model discussed in Section 2
are to be estimated beforehand. Therefore, the robustness of
the method to possible inaccuracies should be assessed. In
this section, we point out possible causes of missmodeling.
In next section, computer simulations are used to characterize
the performance of the method under these impairments.

In the single-neuron model considered, it can be identified
three major sources of inaccuracies:

1. The applied current I, can be itself noisy, with a vari-
ance depending on the quality of the instrumentation
used and the experiment itself. We model the actual
applied current as the random variable

Lapp = I +vr, vi ~ N(0,07), (14)

where I, is the nominal current applied and o the vari-
ance around this value. Plugging (14) into (4) we ob-
tain that the contribution of Iy, to the noise term is

gm vr ~ N(0, (TS/C'm)zai).

2. The conductance of the leakage term has to be esti-
mated beforehand. In general, this term is considered
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constant although it gathers relatively distinct phenom-
ena that can potentially be time-varying. The maximal
conductance of the leakage term is therefore inaccurate
and modeled as

gL:gL_"Vg? VgNN(O7O-§)7 (15)
where gy, is the nominal, estimated conductance and ag
the variance of this estimate. Similarly, inserting (15)
into (4) we see that the contribution of g;, to the noise
term is vy ~ N(0, (Ts/Crn)*(vi1 — EL)oy).

3. The parameters in mq (v¢), Noo(vt), and 7, (vy) are to
be estimated. In general, these parameters are prop-
erly obtained by standard methods [6]. However, as
they are estimates, a residual error typically remains.
To account for these inaccuracies, we consider that the
equation governing the evolution of gating variables is
corrupted by a zero-mean additive white Gaussian pro-
cess with variance o2

ne

At the end of the day, we came up with a way of con-
structing the model covariance matrix, as the contribution of
the aforementioned inaccuracies. In a practical setup, in order
to compute the noise variance due to leakage, we need to use
the approximation 9;_; ~ v;_1, where U;_; is computed by
the filter in (13). We construct the covariance matrix of the
model as

Em,t = diag(ai 0121) ’ (16)
where we used that the overall noise in the voltage model is
L (vy —vy) ~ N(0,02) and

m

T\’ )
”3:(cm> (o7 + (o1 = Ev)’oy) . (1)

6. RESULTS

We simulated data of a neuron of the type described in Sec-
tion 2, i.e. following a Morris-Lecar model. Particularly,
we generated 500 ms of data, sampled at f; = 4 kHz. The
model parameters were set to C,, = 20 uF/cm?, ¢ = 0.04,

Vi=-12mV,V, =18 mV, V3 = 2mV, and V;, = 30
mV; the reverse potentials were Ey, = —60 mV, Ec, = 120
mYV, and Fx = —84 mV; and the maximal conductances were

gca = 4.4 mS/cm? and gk = 8.0 mS/cm?. We considered a
measurement noise with a standard deviation of 1 mV.

In the simulations we considered the aforementioned
model inaccuracies. To excite the neuron into spiking activ-
ity a nominal applied current was injected with I, = 110
uA/cm? and two values for oy where considered, namely 1%
and 10% of I,. The nominal conductance used in the model
was g, = 2 mS/cm?, whereas the underlying neuron had a
zero-mean Gaussian error with standard deviation o, . Two
variance values where considered as well, 1% and 10% of
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Fig. 1. Evolution of the RMSE and the BCRB over time.
Model inaccuracies where oy = 0.01- 1, and o4, = 0.01-gr..

gr. Finally, we considered o,, = 10~? in the dynamics of the
gating variable.

In order to evaluate the efficiency of the proposed estima-
tion method, we computed the Bayesian Cramér-Rao Bound
(BCRB) according to the recursive formulation given in [11],
which we plot as a benchmark for the Root Mean Square Er-
ror (RMSE) curves obtained by computer simulations after
200 independent Monte Carlo trials. Figures 1 and 2 show
the time course of the RMSE using N = {500, 1000} parti-
cles and the BCRB. We see that in both scenarios, our method
attains the BCRB and thus is efficient. We measure the effi-
ciency (n > 1) of the method as the quotient between the
RMSE and the BCRB, averaged over the entire simulation
time. The worse efficiency on estimating v; was 1.43 cor-
responding to 500 particles and 10% of inaccuracies, the best
was 1.11 for 1000 particles and 1% of errors. In estimating n;
the discrepancy was even lower, 1.06 and 1.03 for maximum
and minimum 7. To sum up, the PF approaches the BCRB
with the number of particles and the performance (both theo-
retical and empirical) can be improved if model inaccuracies
are reduced, i.e., if the model parameters are better estimated
at a previous stage.

7. CONCLUSIONS

In this paper we proposed a particle filtering method with op-
timal importance density that is able to sequentially infer the
time-course of the membrane potential and the intrinsic ac-
tivity of ionic channels from noisy observations of voltage
traces. The results show the validity of the approach. The
procedure can be applied to any neuron model. Forthcoming
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Fig. 2. Evolution of the RMSE and the BCRB over time.
Model inaccuracies where oy = 0.1 - I, and o4, = 0.1 - gr..

applications would be: i) validating the method using real
data recordings; i¢) combining the presented algorithm with
fittings of voltage traces to neuron models; i) adding synap-
tic terms to the neuron model and use our method to infer
the synaptic conductances. The latter problem is a challeng-
ing hot topic in the neuroscience literature, which is recently
focusing on methods to extract the conductances from single-
trace measurements, [2], [12]. We think that our PF method
would give useful and interesting results to physiologists that
aim at inferring brain’s activation rules from neurons’ activi-
ties.
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