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ABSTRACT

The automatic detection of Electrocardiogram (ECG) waves
is important to cardiac disease diagnosis. A good perfor-
mance of an automatic ECG analyzing system depends heav-
ily upon the accurate and reliable detection of QRS complex,
as well as P and T waves. In this paper, we propose an ef-
ficient method for extraction of characteristic points of ECG
signal. The method is based on a nonlinear dynamic model,
previously introduced for generation of synthetic ECG sig-
nals. For estimating the parameters of model, we use an
Extendend Kalman Filter (EKF). By introducing a simple
AR model for each of the dynamic parameters of Gaussian
functions in model and considering separate states for ECG
waves, the new EKF structure was constructed. Quantitative
and qualitative evaluations of the proposed method have been
done on Physionet QT database (QTDB). This method is
also compared with another EKF approach (EKF17). Results
show that the proposed method can detect fiducial points of
ECG precisely and mean and standard deviation of estimation
error do not exceed two samples (8 msec).

Index Terms— Extended Kalman Filter (EKF), Electro-
cardiogram (ECG), Characteristic Waves, Fiducial Point Ex-
traction, Segmentation

1. INTRODUCTION

Electrocardiogram (ECG) is a non-invasive, safe and quick
method for cardiac disease diagnosis. Fiducial Points (FPs)
in an ECG signal are the location of peak, onset and offset
of waveforms which have clinically useful information for
physicians. “Fiducial Point Extraction” and “Segmentation”
of ECG can be a first step in many ECG analysis tasks to de-
termine as accurately as possible the peak, onset and offset
locations of the ECG waves.

Up to now, different methods have been used for detect-
ing the QRS complex. Some of them were discussed in [1].
These methods are based on mathematical functions, filtering
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approaches (digital filters, adaptive filters), different mathe-
matical transformations (Wavelet, Hilbert) and classification
methods (neural network approaches, Support Vector Ma-
chine (SVM), fuzzy C-means algorithm) [1]. Some methods
have also been used for P and T wave delineation and esti-
mation such as Partially Collapsed Gibbs Sampler (PCGS)
[2, 3], Hidden Markov Models (HMM) [4] and mathematical
morphology methods [5].

A nonlinear dynamical model for generation of synthetic
ECG signals has been recently developed by McSharry et al.
[6]. Sameni et al. [7] transformed this model and proposed
an Extended Kalman Filter (EKF) algorithm for denoising
ECG signals (“EKF2”). Sayadi et al. modified the EKF2
framework and added parameters of ECG dynamical model as
states to EKF2 and introduced the “EKF17” approach [8, 9].
They also described a Gaussian wave-based state space model
whose each characteristic wave of ECG has been considered
as a state (“EKF4”) [10].

In this paper, we propose a method for detection the fidu-
cial points of ECG signal. In our method by taking the idea
of EKF4 and EKF17 approaches, we introduce a simple AR
model for parameters of Gaussian functions in ECG dynam-
ical model and also consider three separate states for ECG
waves. In brief, we consider 25 parameters of ECG signal
as states of an EKF and we will find peak, onset and offset
of all characteristic waves (QRS complex, P and T waves)
of ECG signal. For validation of our method, we will use
QT database (QTDB) [11, 12] which has ECG signals with
cardiologist annotations. We also compare our method with
another EKF approach which has 17 states (EKF17).

Due to space limitations, basics of EKF are not discussed
in this paper. Details of them can be found in [13, 7, 14].
In this paper we will benefit of previous EKF approaches
(“EKF2”, “EKF17” and “EKF4”). These approaches are dis-
cussed in Section 2. In Section 3, we explain our proposed
method (“EKF25” approach) for fiducial points extraction.
In section 4, we present the results of applying the proposed
method for ECG signals of QT database. Finally, discussion
and conclusions are provided in Section 5.
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2. PREVIOUS EKF APPROACHES

McSharry et al. [6] have proposed a synthetic ECG genera-
tor, which is based on a nonlinear dynamic model. Details of
this model can be found in [6]. Sameni et al. [7] transformed
these dynamic equations into the polar form to obtain a sim-
pler compact set, with the simplified discrete form shown as:{

φk+1 = (φk + ωδ) mod(2π)

zk+1 = −
∑

i δ
αiω
b2i

∆θi exp(−∆θ2
i

2b2i
) + zk + η

(1)

where ∆θi = (φk − θi)mod(2π), δ is the sampling time, η
is a random additive noise that models the inaccuracies of the
dynamic model and the summation over i is taken over the
number of Gaussian functions used for modeling the shape
of the ECG. The αi, bi and θi terms in (1) correspond to the
amplitude, angular spread and location of the Gaussian func-
tions and ω is the angular velocity represents the RR interval
variability.

Sayadi et al. extended EKF2 framework and added pa-
rameters of 5 Gaussian functions in (1) as states to EKF2.
In fact in this approach, 2 states were the same as in EKF2
and 15 other states were added, so that the method was called
“EKF2+15” or briefly “EKF17” approach. This approach was
used for ECG denoising, compression [8] and beat segmenta-
tion of normal ECG signals [9].

Sayadi et al. also described a Gaussian wave-based state
space model [10] whose each characteristic wave, i.e. P, QRS
and T has been considered as a state. As this structure had
4 states, they called it “EKF4” and used it for ECG arrhyth-
mia detection especially PVC detection. In this model they
considered two Gaussian functions for P and T waves.

3. OUR PROPOSED METHOD

In this paper, we modify the previous EKF approaches. Dis-
crete state and observation equations of our proposed model
are defined in (2) and (3), respectively.

φk+1 = (φk + ωδ) mod(2π)

Pk+1 = − ∑
i∈{P1,P2}

δ αikω
b2ik

∆θik exp(−∆θ2
ik

2b2ik
) + Pk + ηP

Ck+1 = − ∑
i∈{Q,R,S}

δ αikω
b2ik

∆θik exp(−∆θ2
ik

2b2ik
) + Ck + ηC

Tk+1 = − ∑
i∈{T1,T2}

δ αikω
b2ik

∆θik exp(−∆θ2
ik

2b2ik
) + Tk + ηT

αi,k+1 = αi,k + uj,k, j = {1, · · · , 7}
bi,k+1 = bi,k + uj,k, j = {8, · · · , 14}
θi,k+1 = θi,k + uj,k, j = {15, · · · , 21}
i ∈ {P1, P2, Q,R, S, T1, T2}

(2)
Φk = φk + v1k
sk = Pk + Ck + Tk + v2k (3)

In this model, the first state is the phase of the ECG. The
second, third and forth ones are the different waves of ECG

which are separately considered as a state. The parameters
of the Gaussian functions are considered as hidden-state vari-
ables (states 5 to 21) with first order AR dynamics but without
corresponding observations. It is obvious that the ECG obser-
vation can be defined as a summation of P,C and T states. In
fact this model is an extension of “EKF4” approach and we
can call it “EKF4+21” or briefly “EKF25”.

Figure 1 shows the blockdiagram of EKF25 approach for
finding peak, onset and offset of normal ECG waves. At first,
all states of the model are estimated by EKF25 approach. The
proposed method for finding the peak of waves, consists of
three steps:

• Using “peak detection” method (finding the Maxima)
for estimated waves (P̂ , Ĉ and T̂ ) and finding their
peaks which are called PP , PC and PT . These peaks
are considered as the first group candidates for final
peak points of ECG.

• θis (peaks of Gaussian functions) are 7 states which are
estimated by EKF25 and are considered as the second
group candidates for final peak points of ECG.

• Using a decision rule like (4) to find the final peak
points of ECG (ΘP ,ΘR and ΘT ), which sk is the ob-
served (original) ECG signal.
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î  

ib̂  
Decision Rule 
for Finding 
Onset and 
Offset 

pP  

ECG  
Phase 

TP  

Decision 
Rule for 
Finding 
Peaks 

Peak  
Points 

Onset & Offset  
Points 

P̂

Ĉ
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Fig. 1. Blockdiagram for the proposed EKF25 Approach.

ΘP = argmax(sk(θP1), sk(θP2), sk(PP ))
ΘR = argmax(sk(θR), sk(PC))
ΘT = argmax(sk(θT1), sk(θT2), sk(PT ))

(4)

In order to find the onset and offset of the waveforms, the
proposed method consists of two steps:

• Finding the onset and offset of P1, P2, QRS, T1 and T2

by using (5). In this equation same as [9], we take ad-
vantage of the spread parameter (bi) and use the ap-
proximately 99% confidence bound for the termination
of Gaussian functions.

Pjon = θPj − 3bPj , Pjoff = θPj + 3bPj , j ∈ {1, 2}
QRSon = θQ − 3bQ, QRSoff = θS + 3bS ,
Tjon = θTj − 3bTj , Tjoff = θTj + 3bTj , j ∈ {1, 2}

(5)
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• Using a decision rule like (6) to find the final onset
and offset of P and T waves. βi, γi, i = {1, · · · , 4}
are real positive coefficients and by using these averag-
ing rules, the Gaussian properties of waves can be pre-
served. Equations which are used for finding the onset
and offset of QRS complex are same as (5) and are not
changed in this step.

Pon = β1P1on + γ1P2on, Poff = β2P1off + γ2P2off

Ton = β3T1on + γ3T2on, Toff = β4T1off + γ4T2off

(6)
Some steps of discussed procedure are same as EKF17

approach but in fact, there are two main differences between
EKF17 and EKF25. The first difference is that EKF25 ap-
proach, considers two Gaussian functions for P and T waves.
The second difference is that in our approach, we define three
separate states for ECG waves. On the one hand, these dif-
ferences have advantage for us. For example for finding the
peak of P wave, we make a decision between the estimated
θP1, θP2 and PP and for finding the Pon we make a decision
between the estimated P1on and P2on. So we can achieve
more exact results. On the other hand, in some cases mak-
ing a correct decision between the estimated parameters is
not simple. In general βi and γi coefficients in (6) can be de-
termined by mathematical calculations or by “trial and error”
methods. Here, we determine these parameters by “trial and
error” methods and they are not constant for all ECG signals
and must be determined experimentally for each ECG signal.

4. RESULTS

For validation of our method, we use QT database which has
ECG signals with cardiologist annotations. All records of
database were sampled at 250 Hz. Details can be found in
[11, 12]. We also compare our proposed method with previ-
ous EKF approach (EKF17). For EKF17 implementation, we
use the model presented in [15].

By following the procedure of figure 1 and using equa-
tions (4)-(6), fiducial points of ECG have been detected. As
we said before, values of βi and γi used in (6) are determined
experimentally for each ECG signals. These values for three
normal signals are reported in tabel 1. Figures 2 and 3 show
orignal labels annotated by expert (up) , the results of FPs ex-
traction by EKF25 (middle) and EKF17 (down) approaches
for records “sel16539” and “sel301” respectively. Red, blue
and black points show the onset, peak and offset of waves
respectively. Record “sel16539” is a normal signal and in
figure 2, we see that EKF25 detect FPs more precisely than
EKF17. Record ’sel301’ has a biphasic T wave (two consec-
utive negative and positive T waves). In this figure, estimated
θT1 and θT2 are shown as two peaks of T-wave and equation
(4) was not used for finding the T-wave peaks of this signal.
As EKF25 approach considers two Gaussian functions for T
wave, so in this figure we see that it can detect both peaks of
T wave precisely whereas EKF17 can not detect them.

Table 1. Values of β and γ coefficients used in (6).
record No. β1 γ1 β2 γ2 β3 γ3 β4 γ4
sel16795 0.6 0.4 0.6 0.4 0.1 0.9 0.2 0.8
sel16786 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1
sel16539 0.6 0.4 0.2 0.8 0.8 0.2 0.2 0.8
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Fig. 2. (a) Original FPs (b) Estimated FPs by EKF25 (c) Es-
timated FPs by EKF17 for record “sel16539”.

For quantitative evaluation of our proposed method,
we calculate time differences between cardiologist anno-
tations (considered as ground truth) and results of the pro-
posed method for two normal ECG signals (“sel16795” and
“sel16786”). Figure 4 shows the absolute estimation error of
EKF17 and EKF25 for all the nine FPs. In this figure, beats 1
to 30 are related to “sel16795” and beats 31 to 60 are related
to “sel16786”. We can see that EKF25 can detect FPs with
good precision and for some FPs such as Poff , Ton, Tpeak

and Toff the result of EKF25 is better than EKF17. Mean
(m) and statndard deviation (SD) of estimation errors for
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Fig. 3. T wave Parameters: (a) Original (b) Estimated by
EKF25 (c) Estimated by EKF17 for record “sel301”
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these signals are given in tabel 2. We can see that for EKF25,
“m” and “SD” values do not exceed two samples (8 msec)
and also for some FPs such as Poff , QRSon, Ton and Toff

error of EKF25 is very smaller than EKF17. Figure 5 shows
the Toff error estimation of “sel16539” for both EKF ap-
proaches. RR interval variations of this signal is also shown.
We see that both EKF approaches are sensitive to RR interval
and in beats with large RR interval variations, estimation
error is high.
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Fig. 4. Absolute error (msec) for onset, peak and offset of P
Wave (up), QRS Complex (middle) and T Wave (down).

5. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a method for extracting fiducial
points of ECG signal which is based on a nonlinear dynamic

Table 2. Mean and SD of errors (msec) between estimated
FPs and manual annotations for two normal ECG signal.

m± SD(ms)
FPs EKF25 EKF17
P on −0.36± 3.95 −0.81± 3.92
P peak 2.08± 2.68 2.75± 3.1
P off 1± 3.71 6.77± 3.52
QRS on −0.06± 2.73 0.78± 2.42
QRS peak 0.15± 1.06 0.12± 0.95
QRS off 4.44± 2.94 3.74± 2.62
T on 0.84± 5.68 10.32± 6.02
T peak 1.64± 2.84 2± 4.73
T off 1.24± 5.82 9.04± 6.72
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Fig. 5. RR interval variation and error of estimated Toff

model and it is an extension of EKF4 approach. By introduc-
ing a simple AR model for each of the 21 dynamic parameters
of the Gaussian functions and considering separate states for
ECG waves, new EKF structure was constructed.

Quantitative and qualitative results show that EKF25 ap-
proach can detect all the nine FPs (peak, onset and offset of P,
QRS and T) and does not miss any one. The mean and stan-
dard deviation of estimation error of this method for all FPs
do not exceed two samples (8 msec) and in some cases, its
results are better than EKF17. It can also find the T waves of
a signal with bi-phasic T wave. Altought EKF25 model con-
siders 25 states, it has a similar computational cost as EKF17.

In this model, we consider ω (angular velocity) as a pro-
cess noise in EKF structure and its mean is defined by aver-
aging RR-interval of the whole signal. By this definition, we
see that for signals with major RR-interval deviations estima-
tion error becomes high. So future work will include modify-
ing the EKF25 approach and considering angular velocity of
ECG as a new state (like [14]). In EKF25 approach, we deter-
mine βi and γi coefficients experimentally. So another work
will include finding a mathematical method for determining
value of these coefficients. In addition, the proposed approach
can be used for analyzing other ECG databases especially ab-
normal signals and signals which have asymmetrical P and T
waves.
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