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ABSTRACT

Mobile health is gaining increasing importance for society
and the quest for new power efficient devices sampling biosig-
nals is becoming critical. We discuss a new scheme called
Variable Pulse Width Finite Rate of Innovation (VPW-FRI) to
model and compress ECG signals. This technique generalizes
classical FRI estimation to enable the use of a sum of asym-
metric Cauchy-based pulses for modeling electrocardiogram
(ECG) signals. We experimentally show that VPW-FRI in-
deed models ECG signals with increased accuracy compared
to current standards. In addition, we study the compression
efficiency of the method: compared with various widely used
compression schemes, we showcase improvements in terms
of compression efficiency as well as sampling rate.

Index Terms— Variable Pulse Width, Finite Rate of In-
novation, ECG modeling, ECG compression

1. INTRODUCTION

The classical sampling theory pioneered by Nyquist and
Shannon relies on the assumption that the acquired signals
are band-limited to a maximum frequency, the Nyquist fre-
quency. Even if this is not the case, a signal can be low-pass
filtered to satisfy this assumption.

Finite Rate of Innovation (FRI) theory [1] constitutes, in
essence, a generalization of this assumption: signals under
consideration must be representable with a finite number of
parameters per unit of time (on average). FRI can recover
these parameters to a greater degree of accuracy than might
be expected from just the bandwidth of the signal. The atoms
of the classical FRI framework are Dirac pulses, which are
characterized by time of occurrence and amplitude. It has
been shown in [1] that, under proper assumptions, these pa-
rameters can be accurately recovered by finding the roots of
an annihilating filter for the Fourier series of the signal, re-
gardless of the bandwidth of the sampled signal.

The Variable Pulse Width (VPW)-FRI model was first
proposed in [2]. In this paper, we formalize the derivation
of the model in both time and frequency domains and fur-
ther demonstrate how to estimate the parameters using an

extension of the classical FRI approach. We also apply the
new algorithm to ECG modeling and show that VPW-FRI
can capture ECG signals with high accuracy using a mod-
erate number of parameters. Moreover, we show that this
model compares favorably with current ECG compression
and modeling techniques.

2. BACKGROUND AND RELATED WORK

We briefly recap an archetypal example of FRI identification
and proceed to review the most commonly used ECG com-
pression techniques.

2.1. FRI

A typical signal with finite rate of innovation is a τ -periodic
stream of K Diracs:

x(t) =
∑
n∈Z

K−1∑
k=0

bkδ(t− tk − nτ),

where {tk}K−1k=0 represent the locations of the pulses and
{bk}K−1k=0 the amplitudes. We review how to recover the dif-
ferent parameters {tk, bk}K−1k=0 by using at least 2K Fourier
series coefficients:

X[m] =
1

τ

K−1∑
k=0

bke
−i2πtkm/τ , m ∈ Z. (1)

The first step is to find an annihilating filter A such that

(A ∗X)[m] = 0,∀m ∈ Z.

The annihilating filter coefficients can be found by solving the
linear system of equations

−X[m] = A[1]X[m− 1] + · · ·+A[k]X[m−K] (2)

for m = 0, 1, . . .K. It has been shown in [1] that any signal
X[m] of the form

∑K−1
k=0 bku

m
k , with bk ∈ R and uk ∈ C is

annihilated by the filter

A(z) =

K∑
k=0

A[k]z−k =

K−1∏
k=0

(1− ukz−1).
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From (1), we see that the roots {uk}K−1k=0 of the Z-transform
of the filter annihilatingX[m] are all located on the unit circle
in the complex plane. Knowledge of these roots enables the
recovery of the time locations of the Diracs by tk = − τ∠uk

2π ,
where ∠uk denotes the phase of uk. Note that this is a non-
linear estimation method as it requires the computation of the
roots. Once we know the tk’s, we can simply find the ampli-
tudes b = [b0, b1, . . . , bK−1]

T by solving the following set of
linear equations:

1

τ
V b = x, (3)

where

V =


1 1 · · · 1

u0 u1 · · · uK−1
...

...
. . .

...
uK−10 uK−11 · · · uK−1K−1

 ,

and x = [X[0], X[1], . . . , X[K − 1]]
T ; V is a Vandermonde

matrix and is thus invertible when all uk’s are distinct. Note
that we can pick any set of consecutive Fourier coefficients,
but considering X[m] for m = −K − 1, . . . ,K results to
minimizing the sampling frequency.

2.2. Prior work on ECG compression and modeling

There is a wealth of generic signal compression (both lossless
and lossy) methods but there are also techniques specifically
applicable to ECG signals. An elaborate overview of ECG
compression algorithms can be found in [3]. ECG lossy com-
pression methods are usually classified into two main cate-
gories: direct methods and transform-based methods. Direct
methods are applied in the time domain: for instance, Ampli-
tude Zone Time Epoch Coding (AZTEC) [4] is an algorithm
that converts ECG signals into a sequence of piecewise affine
functions. Transform-based techniques seek for a sparse rep-
resentation in a particular basis and compression is achieved
by discarding coefficients with magnitude less than a certain
threshold. Typical examples include the Fourier transform,
the Karuhnen-Loève transform, or the wavelet transform [5].
Compressive sensing (CS) has also been investigated: a prac-
tical implementation using Daubechies wavelets is presented
in [6].

A first FRI-based modeling of ECG signals is exposed
in [7]: heart beats are split into two parts, a) the QRS com-
plex, which is modeled using a non-uniform spline of order 1,
and b) the residual, which is sampled at low rate (around 10
Hz). Our work differs from [7] in two different aspects. First,
in VPW-FRI, the entire heart beat is modeled and estimated
with FRI techniques, as opposed to simply the QRS complex
in [7]. Second, our work relies on asymmetric Cauchy-based
pulses, each characterized with four parameters, while in [7],
the underlying model is a linear transformation of a sum of
Diracs (second derivative of a first order spline). VPW-FRI

attains better modeling accuracy as well as higher resilience
to noise.

Other pulse shapes can be used to model ECG signals:
for example, McSharry et al. [8] proposed Gaussian mixtures
to synthesize ECGs. Each Gaussian pulse is characterized
by three parameters, namely amplitude, location and width.
The method described in [9] is also based on Gaussian func-
tions and estimates their parameters via nonlinear least square
methods.

3. VPW-FRI

VPW-FRI is an extension of classical FRI where streams of
Diracs are generalized by adding two parameters: width and
asymmetry. Equivalently, we allow the roots of the annihilat-
ing filter to be located inside the unit circle (so that the filter is
stable). To this end, let us introduce a new parameter ak ≥ 0
that we call width and write the roots as follows:

uk = e−2π(ak+itk)/τ .

We define:

X(1)[m] =
1

τ

K−1∑
k=0

cke
−2π(ak|m|+itkm)/τ , m ∈ Z

and X(2)[m], which is the Hilbert transform of X(1)[m] (the
amplitude of which is denoted by dk):

X(2)[m] = −1

τ

K−1∑
k=0

dk sgn(m)e−2π(ak|m|+itkm)/τ ,m ∈ Z.

Let X[m] = X(1)[m] + X(2)[m]. If we consider the sig-
nal X[m] for m positive, we see that it is annihilated by the
filter A(z) =

∏K−1
k=0 (1 − ukz−1). In this case, the annihilat-

ing filter is computed using (2) for m > K and we can ex-
tract the parameters {tk}K−1k=0 from the roots of A(z) as in the
case of streams of Diracs. Moreover, the widths {ak}K−1k=0 are
given by ak = τ log |uk|

2π . Finally, the parameters {ck}K−1k=0 and
{dk}K−1k=0 can be retrieved by solving equation (3) over the
complex numbers and letting ck = <{bk} and dk = −={bk}.

The continuous-time τ -periodic signal x(t) is obtained by
taking the inverse Fourier transform of X[m]1:

x(t) =

K−1∑
k=0

xk(t) =

K−1∑
k=0

(
x
(1)
k (t) + x

(2)
k (t)

)
=

K−1∑
k=0

∑
n∈Z

ck
ak

π (a2k + (t− tk − nτ)2))

+

K−1∑
k=0

∑
n∈Z

dk
t− tk − nτ

π (a2k + (t− tk − nτ)2))
,

1We refer the reader to [10] for technical details about all derivations
herein.
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Fig. 1: Dashed line: symmetric pulse (Cauchy-Lorentz func-
tion), dotted line: asymmetric pulse, continuous line: VPW
pulse. The parameters used are t0 = 0.5, a0 = 0.03 and
c0 = d0 = 0.1; only one period is shown (n = 0).

Fig. 2: VPW-FRI parameter estimation.

where x(1)k (t) is the periodic expansion of symmetric pulses
and x

(2)
k (t) the periodic expansion of asymetric pulses (cf.

Figure 1). An alternative formula for xk(t) that avoids the
infinite sum is given by1:

xk(t) =
ck
τ

1− |zt|2

(1− zt)(1− z∗t )
+
dk
τ

2={zt}
(1− zt)(1− z∗t )

where zt = e2π(−ak+i(t−tk))/τ . Like the Dirac pulse in tradi-
tional FRI, xk(t) is the atom for this class of signals and we
call it VPW pulse. The block diagram in Figure 2 illustrates
the VPW-FRI parameter estimation procedure.

Remark: VPW pulses are indeed a generalization of
Diracs. By setting dk = 0 and taking the limit of xk(t) when
ak goes to zero, we retrieve a Dirac with amplitude ck located
at time tk. Consequently, we can represent a wider range of
signals by weighted sums of VPW pulses.

4. ECG SIGNALS

We apply the VPW-FRI modeling framework to electrocar-
diogram (ECG) signals. Each heart beat is decomposed into a
sum of five pulses, called P,Q,R, S, T pulses in the medical
literature [11]. The P wave characterizes the beginning of the
heart beat and is generated by the depolarization of the atria.
It is followed by the QRS complex, which corresponds to the
depolarization of the ventricles; this is represented by three
narrow and sharp pulses. The last pulse is the T wave, which
corresponds to the re-polarization of the cells.

Our modeling/compression uses VPW pulses to effi-
ciently parametrize ECGs: Figure 3 shows a sum of five
VPW pulses approximating a single heart beat of an ECG.

4.1. Practical considerations

We discuss various considerations regarding a practical im-
plementation of VPW-FRI for ECG compression and we pro-
pose fixes to improve stability and boost the performance of
the system.

First, it is important to pre-process the data to account
for measurement noise and model mismatch. There are two
denoising methods commonly used in the FRI framework:
Cadzow’s method [12] and the matrix-pencil algorithm [13],
which is based on ESPRIT [14]. Both techniques also apply
to VPW-FRI and empirical results show that the matrix-pencil
algorithm leads to better performance.

Second, when processing multi-beat records, we need to
segment the input signal before performing parameter esti-
mation. A simple approach is to process each heart beat sep-
arately; in order to extract a single beat, QRS detection is
needed [11]. Once the QRS locations have been identified,
every beat is extracted so that the starting and ending points
are located exactly between two consecutive QRS locations.
To allow for a smoother transition between two consecutive
reconstructed beats, it is necessary that the extracted heart
beats slightly overlap. Thus, when stitching back the seg-
ments together, we can smooth any discontinuities by proper
windowing.

Third, we need to ensure that the roots of the annihilating
filter are indeed located inside the unit circle so that the model
is stable. This is not guaranteed to be the case in practice
due to noisy measurements and model mismatch. Let âk be
the estimated value of the parameter ak. One way to cope
with instability is to let âk ← |âk|. Another way to deal
with this issue is to bring back the unstable roots at a fixed
distance inside the unit circle; in other words, we set âk = R
if âk < R, for fixed threshold R. Finally, we can simply
discard the roots located outside the unit circle. We noticed
that fixing the amplitude performs the best, cf. Table 1.

Last, recall that one of the main underlying assumptions
is that the input signals are periodic in time. This is not exact
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Fig. 3: Left: one period of a pulse (sample 123 of MIT-BIH
arrhythmia database), middle: decomposition into 5 VPW
pulses, right: sum of the 5 pulses.
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Method SRR
Plain (no correction) < −10 dB
Magnitude correction when ak < 0 11.77 dB
Magnitude correction when ak < 1/200 16.44 dB
Discard all roots s.t. ak < 0 11.77 dB
Discard all roots s.t. ak < 1/200 11.99 dB

Table 1: Different methods to obtain a stable annihilating fil-
ter; reported SRR is the average SRR obtained on 48 records
(first 30 seconds) from the MIT-BIH arrhythmia database.

in real data for various reasons: for instance, breathing causes
baseline wandering in the input signal. To improve the accu-
racy and reliability of the algorithm, we modify the extracted
beat so that the amplitudes of the starting and ending points
are the same. The correction is performed by subtracting a
monotone signal from the extracted beat, e.g., one half of the
period of a cosine. Our experiments using various recordings
from the MIT-BIH arrhythmia database [15] show a notice-
able improvement when performing such correction.

5. SIMULATIONS

For measuring the modeling accuracy of VPW-FRI, we define
the signal to residual ratio (SRR) as

SRR := 20 log10

(
‖x‖2
‖x− x̂‖2

)
,

where x is the original signal and x̂ denotes the reconstructed
version. Furthermore, we define the compression ratio (CR)
as the number of bits used to store signal x divided by the
number of bits used to store x̂. Ignoring errors due to quan-
tization, a simplified way of measuring the compression is to
record the number of parameters needed per second.

5.1. Comparison with other techniques

An example of a compressed ECG signal using VPW-FRI is
shown in Figure 4. Overall, we observe that VPW-FRI is ca-
pable of preserving the morphological information of the sig-
nal, while discarding the high frequency noise present in most
of ECG signals.

First, we compare the VPW-FRI model against Gaussian-
based models. The two main differences between Gaussian
and VPW pulses are that VPW pulses have heavier tails and,
more importantly, they naturally incorporate asymmetry thus
leading to a wider range of possible shapes at the cost of an
extra parameter per pulse. The method described in [9] has
been tested on the MIT-BIH database and a total of sixteen
Gaussian pulses (48 parameters) is used to model a single
heart beat. On randomly chosen sample beats, a root mean
squared (RMS) error between 0.020 and 0.059 was claimed.
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Fig. 4: Top: Record 123 from the MIT-BIH arrhythmia
database, middle: signal reconstructed using VPW and K =
7 (CR of 15), bottom: reconstruction error.

We obtain comparable results with seven VPW pulses (28 pa-
rameters per heart beat): indeed we observe an RMS error
between 0.014 and 0.068 and an average RMS error of 0.027
(average SRR of 22.0 dB) on the first 100 seconds of all 48
records of the MIT BIH database. The resulting CR is 9.5 in
our case, compared to 5.5 in [9].

Second, we compare the compression performance of
VPW against AZTEC [4]. Both methods are tested on the
first 60 seconds of the entire MIT-BIH arrhythmia database.
For a fixed CR, the resulting average SRR of VPW-FRI com-
pression is 15 dB better than the average SRR of AZTEC.

Last, we compare our results to [6], where a CS algorithm
is applied to a selection of signals from the MIT-BIH arrhyth-
mia database. Typically, for a CR of 10, an SRR slightly be-
low 22 dB is claimed on the first 10 minutes of record 107
as opposed to 25.4 dB when using our model. To achieve the
same SRR as VPW-FRI, the CS approach results in a CR of
8.

The results presented in this article are reproducible:
http://rr.epfl.ch/42.

6. CONCLUSIONS

We have proposed a parametric model for ECG signals,
namely VPW-FRI, where the morphology of the signal is
specifically leveraged; using common practice, each heart
beat is captured by a sum of 5 pulses (P,Q,R,S,T), each of
which is modeled by a VPW pulse. We have analyzed a
method for estimating the parameters and have provided
various heuristics to boost the performance in the presence
of noise and model mismatch. Extensive experiments have
indicated improvements over current methods in terms of
all modeling accuracy, compression efficiency and sampling
rate.
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