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ABSTRACT

Linear discriminant analysis (LDA) is a commonly-used fea-
ture extraction technique. For matrix-variate data such as
spatio-spectral electroencephalogram (EEG), matrix-variate
LDA formulations have been proposed. Compared to the
standard vector-variate LDA, these formulations assume a
separable structure for the within-class and between-class
scatter matrices; these structured parameters can be estimated
more accurately with a limited number of training samples.
However, separable scatters do not fit some data, resulting in
aggravated performance for matrix-variate methods. This pa-
per first proposes a common framework for the vector-variate
LDA with non-separable scatters and our previously pro-
posed solution with separable scatters. Then, a regularization
of the non-separable scatter estimates toward the separable
estimates is introduced. This novel regularized framework
integrates vector-variate and matrix-variate approaches, and
allows the estimated scatter matrices to adapt to the data
characteristics. Experiments on data set V from BCI compe-
tition III demonstrate that the proposed framework achieves a
considerable classification performance gain.

Index Terms— regularization, separable covariance,
matrix-variate Gaussian, linear discriminant analysis, 2DLDA.

1. INTRODUCTION

Electroencephalogram (EEG) is a record of electrical activi-
ties of the brain captured through electrodes mounted on the
scalp [1]. Classification of EEG signals is desired in many
applications, including medical diagnosis [2] and design of
brain computer interface (BCI) systems [3]. A BCI system
provides an interface to control external devices. It can be
used in prosthetics, to perform highly demanding tasks, or
for navigation in virtual environments. This paper consid-
ers a spontaneous BCI system using noninvasive multichan-
nel EEG to classify motor imagery tasks [4].

Motor imagery tasks affect both spatial and spectral char-
acteristics of EEG signals [5, 6]. Therefore, BCI systems
operate on the power spectra of different EEG channels
which form a matrix-variate sample. These samples are

high-dimensional and consist of highly correlated compo-
nents. In classifying these signals, the discriminant data
components need to be extracted by techniques such as the
commonly used linear discriminant analysis (LDA) [7]. A
trivial one-directional LDA (1DLDA) feature extraction ap-
proach applies the vector-variate LDA on vectorized multi-
channel EEG samples; whereas matrix-variate LDA methods
[8, 9, 10, 11, 12] utilize the inherent matrix-variate structure
of the data to facilitate the estimation of within-class and
between-class scatter matrices.

Among matrix-variate methods, Ye’s two-directional
LDA (Y2DLDA) [8] is widely used in the literature but
does not provide Bayes optimal features [13, 14, 15]. We
have previously proposed matrix-to-vector LDA (MVLDA)
[16, 17] as a Bayes optimal matrix-variate LDA. Similar to
other matrix-variate methods, MVLDA assumes a separable
structure for scatter matrices of the data.

In the current work, in Section 3, MVLDA is presented
in a common framework with 1DLDA, but with its distinct
separable scatter matrix estimates. Based on this framework,
Section 4 introduces a regularized scatter matrix estimate as a
trade-off between MVLDA and 1DLDA. Compared to vector-
variate regularized LDA solutions [18], this novel approach
integrates the vector-variate and matrix-variate solutions, and
provides a generally superior performance as demonstrated in
Section 5.

2. PROBLEM DEFINITION

An overview of the target classification problem is shown in
Fig. 1. Preprocessed spatio-spectral EEG samples are denoted
as matrices Xm×n. 1 In the training stage, Ni training sam-
ples Xij , 1 ≤ j ≤ Ni, are used to estimate parameters of each
class Ωi. Then, in the testing stage, the BCI system classi-
fies each spatio-spectral pattern Xm×n into one of the classes

1In this paper, scalars, vectors, and matrices are respectively shown in
regular lowercase/uppercase (e.g. a or A), boldface lowercase (e.g. a), and
boldface uppercase (e.g. A). The transpose of A, trace of A, null (kernel)
space of A, and Kronecker product of A and B are respectively denoted by
AT , tr(A), Null(A), and A⊗B. The vectorized representation of a matrix
A through concatenation of its columns is shown as vec(A).
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Fig. 1: Outline of the classification system.

Ωi, 1 ≤ i ≤ C, corresponding to different BCI tasks. The
target is to maximize the probability of correct classification.

This paper focuses on the design of the feature extrac-
tor so that the features with the most discriminatory informa-
tion are extracted. A regularized feature extractor is proposed
which integrates the existing 1DLDA and MVLDA methods.
This integrated approach is based on a common framework
for 1DLDA and MVLDA as described in the next section.

3. 1DLDA VS. MVLDA: A COMMON FRAMEWORK

This section describes 1DLDA and the previously proposed
matrix-variate MVLDA method [16, 17] based on a common
framework consisting of a linear operation:

yd×1 = Td×mnxmn×1, (1)

where xmn×1 = vec(X) denotes the (column-wise) vector-
ized data. The 1DLDA method uses a vector-variate approach
to find T in contrast to the matrix-variate formulation of
MVLDA; although both methods provide a set of Bayes opti-
mal features according to their corresponding assumptions.

3.1. 1DLDA

The 1DLDA method operates on the (column-wise) vector-
ized data xmn×1 = vec(X). Starting from the matrix-variate
mean Mi for each class Ωi, Mi =

1

Ni

∑Ni

j=1
Xij , and the

overall mean M =
∑C

i=1

Ni

N
Mi, the corresponding mean

vectors for x consist of µi = vec(Mi) and µ = vec(M).
Then, 1DLDA estimates the within-class scatter SW and the
between-class scatter SB as

SW =

C∑

i=1

Ni∑

j=1

(xij − µi)(xij − µi)
T , (2)

SB =

C∑

i=1

Ni(µi − µ)(µi − µ)T . (3)

The 1DLDA operator Td×mn in (1) is constructed with its
rows as the d eigenvectors of S−1

W SB corresponding to the
largest eigenvalues.

The 1DLDA features are Bayes optimal if the data in each
class follow a Gaussian distribution with a common covari-
ance matrix among the classes, i.e., the data are homoscedas-
tic Gaussian, and the corresponding parameters are accurately
known [19]. In practice, the data parameters need to be es-
timated. For most data sets, the dimensionality of 1DLDA
scatter matrices SW and SB , i.e., mn × mn, is so large that
the available training samples do not suffice for accurate es-
timation of these parameters. Thus, a matrix-variate method
utilizing the inherent structure of these data is preferable.

3.2. MVLDA

When the original data are matrix-variate, the inherent struc-
ture of the data can be utilized in estimation of SW and SB . In
[16, 17] we proposed the MVLDA feature extractor using sep-
arable estimates for the scatter matrices: SW = SWR⊗SWL,
and SB = SBR ⊗ SBL. These scatters are estimated as a
Kronecker product of column-wise (left) and row-wise (right)
components. Maximum-likelihood estimates for left and right
within-class scatters SWL and SWR were used, which are cal-
culated through iteration on the following two steps [16, 20]:

SWL =
1

Nn

C∑

i=1

Ni∑

j=1

(Xij−Mi)SWR
−1(Xij−Mi)

T ,

SWR =
1

Nm

C∑

i=1

Ni∑

j=1

(Xij−Mi)
TSWL

−1(Xij−Mi). (4)

The left and right between-class scatters are also calculated as
[16, 17]

SBL =

C∑

i=1

Ni(Mi −M)(Mi −M)T ,

SBR =
1

tr(SBL)

C∑

i=1

Ni(Mi −M)T (Mi −M). (5)

Then, it can be shown that the previously proposed MVLDA
can be written in the format of (1), with the rows of Td×mn

as the d eigenvectors of (SWR ⊗ SWL)
−1(SBR ⊗ SBL) cor-

responding to the largest eigenvalues.
The MVLDA method provides Bayes optimal features if

the data are homoscedastic Gaussian with accurately known
parameters, and SW and SB follow a separable structure as
above. The assumption of separability of SW and SB is prac-
tical for most matrix-variate data [16, 17]. However, specific
data sets may deviate from this assumption, and this deviation

1238



reduces the effectiveness of MSLDA extracted features [17].
To obviate these challenges of 1DLDA and MVLDA, the next
section proposes a flexible regularized estimation approach.

4. PROPOSED REGULARIZED MVLDA

Based on the previous section, the essential difference be-
tween 1DLDA and MVLDA lies in their corresponding pro-
cedure for estimating within-class and between-class scatters.
The separable structure adopted by MVLDA provides a con-
sistent estimate for most practical matrix-variate data sets.
However, for data sets with deviation from the assumed sepa-
rability, i.e, if SW 6= SWR⊗SWL or SB 6= SBR⊗SBL, this
structure may provide an oversimplified description. There-
fore, we need a flexible trade-off between the non-separable
1DLDA estimates and the separable estimates of MVLDA.
Parameter regularization [18] can trade-off between a general
estimate with less bias and a constrained estimate with less
variance. Using this technique in the framework of Section
3, we propose a novel regularization of the generally non-
separable estimates SW and SB in (2) and (3) toward the sep-
arable estimates Ss

W = SWR⊗SWL and Ss
B = SBR⊗SBL:

Sr
W = (1− γw)SW + γw Ss

W ,

Sr
B = (1− γb)SB + γb S

s
B . (6)

It should be noted that from (5), tr(Ss
B) = tr(SB), and due

to the convergence of the iteration in (4), tr(Ss
W ) = tr(SW )

[20]. Therefore, the regularization coefficients 0 ≤ γw ≤ 1
and 0 ≤ γb ≤ 1 determine the actual weighting between the
non-separable and separable estimates.

The proposed regularized MVLDA (R-MVLDA) method
uses a linear operator Td×mn as in (1) whose rows are se-
lected as the d eigenvectors of (Sr

W )−1Sr
B corresponding to

the largest eigenvalues. The regularization coefficients can
be estimated using procedures such as cross-validation [7], or
through prior knowledge of the characteristics of the data.

Setting γw = γb = 0 simplifies R-MVLDA to 1DLDA,
while γw = γb = 1 leads to MVLDA. Therefore, R-MVLDA
integrates the two methods into a common framework. The
regularization coefficients γw and γb respectively represent
the degree of separability of SW and SB for the data, with
γw = γb = 0 corresponding to the non-separable extreme
case and γw = γb = 1 denoting the fully separable case. With
γw and γb selected based on the nature of the given data set,
R-MVLDA adapts to the data characteristics and, as shown in
the next section, outperforms both 1DLDA and MVLDA.

5. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of R-MVLDA
on the actual spatio-spectral EEG patterns in a BCI scenario.
In order to focus on the performance of the feature extraction
stage, a simple linear Gaussian classifier is used in the system

of Fig. 1. The resulting correct classification rate (CCR) per-
formance using R-MVLDA is compared with that of 1DLDA,
Y2DLDA [8], and MVLDA [16, 17].

5.1. EEG Data Set and Preprocessing Procedure

Data set V from BCI competition III [4] is used which con-
tains EEG data of three normal subjects collected in four ses-
sions. The data are recorded using 32-electrode Biosemi sys-
tem at 512Hz sampling rate. Each record consists of sequen-
tial 15-second trials of three possible mental imagery tasks:
left-hand movement, right-hand movement, and generation of
words beginning with a random letter. The last session is used
for testing and the rest for training. The goal of the competi-
tion is to classify the mental task every 0.5 second using only
the last second of the data. The highest CCR in this competi-
tion without post-processing was %62.72 [21].

The raw EEG data are spatially filtered using a surface
Laplacian filter computed using spherical splines of order
2 and regularization parameter of 0.01. Then, a short-time
Fourier transform with a Hamming window of length one
second and overlapping factor of 15

16
is applied. The resulting

power spectral components from 8 − 30Hz with resolution
of 2Hz are averaged every 0.5 seconds, leading to 12 spec-
tral components per EEG channel. This procedure results in
12× 32 matrix-variate spatio-spectral EEG samples. Further-
more, the 8 centro-parietal channels (C3, Cz, C4, CP1, CP2,
P3, Pz, and P4) which are highly correlated to motor imagery
tasks are selected to form a new set of 12 × 8 EEG samples
with a lower dimensionality (ref. Tab. 1).

5.2. Experimental Results

The CCR values for different feature extractors are reported
in Tab. 1. The number of features d and the regularization
parameters are chosen so that CCR is maximized. Practically,
these parameters need to be estimated through methods such
as cross-validation. However, in this study, we use the opti-
mal values in order to investigate the essential performance
limitations for different methods. For Y2DLDA, 10 iterations
are performed [8]. For MVLDA and R-MVLDA, a threshold
of 10−5 on the incremental change in the Frobenius norm of
SWL and SWR is used to terminate the iteration in (4); this
choice leads to an average of 18 or 14 iterations respectively
for the data with all or selected EEG channels.

From Tab. 1, R-MVLDA provides a considerable perfor-
mance gain compared to 1DLDA and MVLDA, whose perfor-
mances are in turn superior to that of the non-Bayes-optimal
Y2DLDA. When all the EEG channels are used, the data di-
mensionality is higher and MVLDA significantly outperforms
1DLDA. Therefore, γw for R-MVLDA is much higher in this
case, so that R-MVLDA leans toward the preferable MVLDA
method. On the other hand, γb is almost always large, which
signifies that for this data set, between-class scatter is better
estimated as a separable matrix.
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Table 1: Classification results for different feature extractors.

Data Size
Method

Subject a Subject b Subject c Avg.

(m× n) %CCR d γw γb %CCR d γw γb %CCR d γw γb %CCR

(12×8)
1DLDA 74.89 2 63.71 2 51.26 1 63.29

Y2DLDA 36.38 36 45.15 1 38.45 15 39.99
MVLDA 74.04 11 62.24 36 53.57 48 63.28

R-MVLDA 77.66 43 0.10 1.00 68.57 37 0.00 1.00 55.88 4 0.65 1.00 67.37
(12×32)

1DLDA 69.15 2 58.23 2 50.21 1 59.20
Y2DLDA 37.66 32 43.25 60 40.97 20 40.62
MVLDA 76.81 206 65.19 2 57.35 51 66.45

R-MVLDA 78.72 4 0.80 0.80 68.78 4 0.95 0.90 62.82 16 0.75 0.95 70.10

γ
w

γ b
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Fig. 2: CCR of R-MVLDA versus the regularization parame-
ters. Darkness of the pixels denote the %CCR for subject ‘c’
with data from all the 32 channels and d = 16.

The performance gain achieved by R-MVLDA in Tab. 1
and its γw and γb values vary for different subjects. When
using all the channels, R-MVLDA’s gain is most significant
for subject ‘c’. For this subject, R-MVLDA’s CCR profile
versus γw and γb at the optimal d value is shown in Fig. 2.
In this plot, (0,0) and (1,1) corners respectively correspond
to 1DLDA and MVLDA as extreme cases. For γb . 0.8, the
low-rank SB matrix dominates the largest eigenvalues of Sr

B ,
and thus γb does not affect the CCR significantly.

In Fig. 3, CCR of different methods is plotted versus 1≤
d≤100 for subject ‘c’. It should be noted that since the num-
ber of 1DLDA features is limited to C − 1 = 2, a horizontal
dashed line is drawn from its last CCR to the end of range of
d. Again, it is demonstrated that R-MVLDA can significantly
improve the performance of both 1DLDA and MVLDA.
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Fig. 3: CCR of different methods versus number of features
d. CCR values belong to subject ‘c’ with data from all the 32
channels.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, for the first time, a regularized LDA formulation
as a trade-off between the existing matrix-variate and vector-
variate approaches was proposed. Although this generalized
approach does not provide the computational efficiency of the
matrix-variate approach, it provides a superior performance
compared to the solutions on both sides of the trade-off.

In the experiments on spatio-spectral EEG patterns, the
optimal regularized scatters were closer to the separable esti-
mates in most cases. This result demonstrates that for most
EEG data sets, separable scatter matrix estimates are prefer-
able to non-separable estimates. This finding and its physical
interpretation can be further studied in a future work.
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