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ABSTRACT 

 
The performance of Brain-Computer Interface (BCI) 
applications are sometimes hindered by non-stationarity in 
the EEG data from sessions on different days. This paper 
proposes an algorithm for adaptive training of a SVM 
classifier to address the non-stationarity in EEG by adapting 
the kernel to data from subsequent sessions. The kernel 
width parameter of the kernel function of the SVM classifier 
is adapted using an information theoretic cost function based 
on minimum error entropy (MEE). An experiment is 
performed using the proposed method on EEG data 
collected without feedback from 12 healthy subjects in two 
sessions on separate days. The results using the proposed 
method  yielded a mean accuracy of 75%, which is 
significantly better compared to the baseline result of 67% 
without kernel adaptation (P=0.00029). 
 

Index Terms—Brain–computer interface (BCI), 
electroencephalography (EEG), classification, adaptation.  
 

1. INTRODUCTION 
 
Brain-Computer Interfaces (BCIs) are communication 
systems that enable subjects to send commands to 
computers by using only their brain activity [1]. Non-
stationarity arising from high variability of EEG signals is a 
major obstacle in EEG-based BCI systems. Non-stationarity 
has been found to be linked to various factors such as, 
changes in the physical properties of the sensors, variability 
in neurophysiological conditions, psychological parameters, 
ambient noise and motion artifacts [2-4]. 

The importance of addressing session to session non-
stationarity has been widely recognized in the BCI 
community. Various signal processing and learning methods 
such as, Bayesian transduction, active learning and 
distribution matching have been proposed [3-6].  Stationary 
Subspace Analysis (SSA) [4] is another unsupervised 
learning method that finds subspaces in which data 
distributions stay invariant over time.  

Current research addressing non-stationarity also includes 
methods that adapt the classifiers using the knowledge from 
empirical data [7-9]. These methods include adaptation of 

LDA and SVM classifiers which are the commonly used 
classification methods in BCI [10]. Adaption of LDA 
involves updating the statistical parameters such as mean, 
covariance and bias [7]. Adaptive SVM methods include 
least square based methods with various penalty functions 
[8,9].  

All these adaptive methods use minimization of error 
based on the classification output to optimize some 
parameter in the classifiers [7-10]. In this type of 
adaptations, the error is under the control of the parameters 
of the adaptive system because of the error depends on the 
true labels which is a function of the parameters been 
adapted.  

Error entropy criterion takes into account the amount of 
information in the error distributions. Therefore 
minimization of error entropy considers the error 
distributions rather than error values.  Error entropy based 
adaptive systems have been applied in designing adaptive 
filters [11-13]. However, the use of the error entropy to 
adaptation of kernel classification has not been attempted.  

In this work we propose to use the error entropy to adapt 
the width of the Gaussian kernel of the SVM classifier. 
Adapting the classifier parameters have been found to 
produce faster adaptive systems than adapting the classifier 
models [7,14]. A subset of data from the later session is 
used as adaptation data to estimate an error entropy based 
cost function which is minimized by adapting the kernel 
width. Positive results were obtained for the proposed 
method on motor imagery EEG data collected on different 
days.  

 
2. METHOD 

 
The data from the initial session is used first to generate an 
initial model for the classifier after the basic preprocessing 
steps of bandpass and spectral filtering. Adaptation data 
from subsequent session is used to optimize the kernel width 
parameter. Figure 1 summarizes the proposed method. The 
pseudo code of the proposed method is shown in Figure 2 
for further clarification.  

The initial training data from the first session and 
adaptation data from later session are subjected to pre-
processing steps of bandpass filtering at 8-30Hz. Initial 
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training data is spatially filtered by the Common Spatial 
Patterns (CSP) method [15,16]. Adaptation data on the other 
hand use the CSP projection matrix created on the initial 
data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Proposed Method  
 

The SVM classifier maximizes the margin of separation 
between two classes based on the assumption that it 
improves the classifier’s generalization capability [10]. 
They map the input (x) into a high-dimensional feature 
space ( ( ))z xφ=  and construct an optimal classification 
hyperplane defined by 0w z b⋅ − = , where b is the bias. The 
optimal hyperplane is found by solving the primal problem, 
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where xi is the ith sample and [ 1, 1]iy ∈ − +  is the class label. 
This problem is solved in its dual form, 
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where k(xi,xj) is the kernel function. The regularization 
parameter C, determines the tradeoff between minimizing 
the training error and minimizing model complexity. For the 
Gaussian kernel,   
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In this paper we adapt the kernel width parameter σ  
which defines the non-linear mapping from the input space 
to the high dimensional feature space. The initial classifier 
model is trained only on the training data from first session. 

Adaptation data is used to iteratively update the classifier 
kernel based on the error function. The error function 
indicates the error margin of the SVM classifier. For a given 
adaptation data sample, if the predicted class label is 
different from the actual class, the distance from the margin 
is multiplied by the predicted class value [ 1, 1]py ∈ − +  to 
obtain the error function value as shown in Equation (1), 

if ,
otherwise, 0.

p o p py y y d
e

≠ ×
= 


  (1) 

where yp is the predicted label, yo is the actual label and dp is 
the distance from the classification hyperplane.   

The KL divergence based cost function measures the 
difference in the estimated error and the actual error. We 
study the effect of adaptively training the classifier on the 
adaptation data from the second session by optimizing the 
kernel width of the parameter to minimize the KL 
divergence based cost function.    

 

 
 
Figure 2: Pseudo code of the proposed method 
 
2.1. Error Entropy Criterion 
 
The goal of adaptation using error entropy criterion (EEC) is 
to remove as much uncertainty as possible from the error 
signal [11]. This can be achieved by calculating the entropy 
of the error and minimizing it with respect to the free 
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parameters. The error entropy minimization can be achieved 
using information theoretic estimators.  

Principe et al. developed estimators of information 
theoretic quantities based on Information Potential (IP), 
which is the mean of the probability density function of data 
and happens to be the integrand of Renyi’s quadratic 
entropy [12].  Renyi’s quadratic entropy of the error is 
defined as  

H2(e) = −logV(e), where V(e) = E[p(e)] is the 
expected error.  

Hence, Renyi’s quadratic entropy is a monotonic function 
of the negative of 𝑉(𝑒). The logarithm is dropped as it does 
not change the location of the stationary point of the cost 
function for adaptation. The minimization of entropy 
corresponds to maximization of 𝑉(𝑒).  

An efficient method to maximize 𝑉(𝑒) is to use 
estimators of information theoretic quantities. Minimizing 
the Kullback–Leibler divergence between the true and 
estimated probability distribution functions of error, 
denoted 𝑓(𝑒) and 𝑓𝜎(𝑒), as a function of the kernel width σ 
[13]. 
 
2.2. Minimizing Kullback–Leibler divergence for kernel 
Width Adaptation 
 
The estimators of information theoretic quantities like 
entropy are based on Parzen kernels. Therefore, a kernel 
needs to be selected to estimate the pairwise interactions 
between samples.  

In this criterion, kernel width controls the smoothing 
introduced by a kernel function used for non-parametric 
estimation of the probability density function from samples, 
as in Parzen windows [17]. 

The kernel width is considered as a parameter that can be 
adapted in a way that the discriminant information or the 
Kullback–Leibler loss between the estimated density (using 
the kernel) and the true density is minimized. In other 
words, the kernel width is adapted with its own cost 
function in a way that the estimated error distribution 
resembles the true error distribution as closely as possible, 
based on Kullback–Leibler divergence.  

The objective is to minimize 
𝐷𝐾𝐿�𝑓||𝑓𝜎� =  ∫𝑓(𝑒)𝑙𝑜𝑔 � 𝑓(𝑒)

�̂�𝜎(𝑒)
� 𝑑𝑒,   (2) 

where the subscript σ denotes the dependency of estimated 
probability distribution function f̂σ on the kernel width. The 
equation (2) can be re-written as 
 
𝐷𝐾𝐿�𝑓||𝑓𝜎� 

= �𝑓(𝑒)𝑙𝑜𝑔�𝑓(𝑒)� 𝑑𝑒 − � 𝑙𝑜𝑔�𝑓𝜎(𝑒)� 𝑓(𝑒)𝑑𝑒 

= ∫𝑓(𝑒)𝑙𝑜𝑔�𝑓(𝑒)� 𝑑𝑒 − 𝐸�𝑙𝑜𝑔�𝑓𝜎(𝑒)��.   (3) 
where 𝐸is the expectation operator over the true distribution 
of 𝑒. 

The first term in equation (3) is independent of the kernel 
width. Therefore, minimizing DKL�f||f̂σ� with respect to σ is 

equivalent to maximizing the second term E�log�f̂σ(e)��. 
Which can be interpreted as the cross-entropy of the 
estimated probability distribution function, and the true 
probability distribution function. Using the sample estimator 
for the expectation operator for a Gaussian Kernel the 
objective function becomes 

ĴKL(σ) = 1
N
∑ � 1

N−1
∑ Gσ�ei − ej�N
j=1,j≠i � .N

i=1  (4) 
where N is the window of samples used to estimate density 
of the error, for a Gaussian kernel with width σ. 

Taking the derivative of objective function in equation 
(4) with respect to kernel width σ results in, 

  ∂JKL(σ)
∂σ

= E �
∂f̂σ(e)

∂σ�

f̂σ(e)
�  

 

= E �
∑ exp�−(e−ei)2

2σ2
� ��(e−ei)2

σ3
� −1 σ� �n−1

i=n−L

∑ exp�−(e−ei)2
2σ2� �n−1

i=n−L

�. (5) 

 
Using the equation (5) the update rule for kernel size can 

be formulated as, 

σn+1 = σn + γ
∂JKL(σ)
∂σ

, 
= σn

+ γE �
∑ exp �−(e − ei)2

2σ2� � �(e − ei)2
σ3� − 1 σ� �n−1

i=n−L

∑ exp �−(e − ei)2
2σ2� �n−1

i=n−L

�. 

By evaluating the operand at the current sample of the 
error while dropping the expectation operator results in an 
approximation of the gradient which can be used as an 
efficient update rule, 

σn+1 = σn + γΕ �
∑ exp�

−�en−ei�
2

2σn2
��

�en−ei�
2

σn3
− 1
σn
�n−1

i=n−L

∑ exp�
−�en−ei�

2

2σn2
�n−1

i=n−L

�. (6) 

The update rule in equation (6) is iteratively applied until 
all adaptation samples are considered. The updated kernel is 
applied for classification of test samples. 

 
3. EXPERIMENT 

 
The motor imagery data used for the analysis was collected 
using a Nuamps EEG acquisition hardware 
(http://www.neuroscan.com) with unipolar Ag/AgCl 
electrodes, digitally sampled at 250 Hz with a resolution of 
22 bits for voltage ranges of ±130mV. EEG signals from 22 
scalp positions, mainly covering the primary motor cortices 
bilaterally were recorded. The sensitivity of the amplifier 
has been set to 100μV.  

A total of 12 healthy subjects were recruited for the study. 
Ethics approval and informed consent were obtained. Two 
subjects chose to perform left hand motor imagery while the 
remaining 10 subjects chose to perform on the right hand. 
The subjects were instructed, in the form of visual cues 
displayed on the computer screen, to perform kinaesthetic 
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motor imagery of the chosen hand, and rest during the 
background rest condition.  

EEG data were collected without feedback in two 
sessions from each subject on separate days. In the first 
session, two runs of EEG data were collected from a subject 
while performing motor imagery of the chosen hand and 
background rest condition. In the second session, three runs 
of EEG data were collected on another day while 
performing motor imagery of the chosen hand and 
background rest condition. Each run lasted approximately 
16 minutes that comprised 40 trials of motor imagery and 40 
trials of rest condition. 

The motor imagery data collected during first session 
were used as training data for learning CSP spatial filters 
and the initial classifier, and first half of motor imagery data 
from the later session was used as adaptation data. The 
second half of motor imagery data from the later session 
was used as test data.  

 
4. RESULTS AND DISCUSSIONS 

 
The results obtained for the data collected are shown in 
Table 1. The twelve subjects are denoted as A1 to A12. The 
mean accuracies and standard deviations calculated for all 
the subjects are denoted as mean and S.D. in the table. The 
baseline classification uses a SVM classifier with a static 
Kernel and uses all the training data and the adaptation data 
for training the classifier. In the proposed method the data 
collected during first session and the adaptation data were 
used to train the classifiers. The second half of motor 
imagery data from the later session was used as test data.  

 
Subject Baseline This  Method Increment 

A1 60.5 68.3 7.8 
A2 58.3 67.5 9.1 
A3 51.1 55.9 4.7 
A4 63.9 79.4 15.5 
A5 64.2 74.3 10.1 
A6 83.3 88.7 5.4 
A7 79.4 79.4 4.5 
A8 93.6 93.6 0.0 
A9 65.5 79.6 14.1 

A10 54.7 61.9 7.1 
A11 50.5 65.9 15.3 
A12 79.7 85.0 5.3 

Statistics  
Mean 67.07 75.0  
S.D. 13.82 11.33  
P 0.00029  

Table 1: Comparative classification accuracy rate  (%) results on 
the test data sets. P-value denotes the result of pairwise t-test 
against the baseline. 
 

The observed mean baseline accuracy is 67%. The 
baseline result was compared against the results obtained 
using the proposed Kernel width adaptation method. 
Pairwise t-test was carried out between the baseline results 
and the proposed method. The mean accuracies from the 
proposed Kernel width adaptation method are found to be 

significantly higher than the baseline at a confidence level 
of 0.05. 

The increments made by the proposed adaptive method 
over the baseline are shown in the fourth column of Table 1. 
Only one subject does not show any improvement in 
accuracy. All other subjects show substantial increments in 
accuracy. 

 
5. CONCLUSION 

 
In this study, a novel algorithm to adapt the Kernel width 
parameter of SVM classifier to improve classification of 
non-stationary EEG data is proposed. In the proposed 
algorithm, the width parameter of the Kernel of the classifier 
is iteratively adapted based on Information theoretic cost 
function to minimize the KL divergence between the 
estimated and the actual error distributions.  

The proposed method is applied on EEG data collected 
without feedback from 12 healthy subjects in two sessions 
on separate days. The results using the proposed method 
yielded statistically significant improvement in 
classification accuracies on non-stationary EEG data across 
sessions compared to the baseline without kernel adaptation. 

Future work based on this approach would include 
adaptation of Kernel mean and other parameters to optimize 
the adaptation. It would also be interesting to investigate 
how other cost functions would perform. 
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