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ABSTRACT 

 

Neurotechnologies based on electroencephalography 

(EEG) and other physiological measures to improve task 

performance in complex environments will require tools and 

analysis methods that can account for increased 

environmental noise and task complexity compared to 

traditional neuroscience laboratory experiments. We 

propose a bag-of-words (BoW) model to address the 

difficulties associated with realistic applications in complex 

environments. In this paper, our proof-of-concept results 

show that a BoW classifier can discriminate two task-

relevant states (high versus low task-load) while an 

individual performs a simulated security patrol mission with 

complex, concurrent tasking. Classifier performance is 

largely consistent across six simulation missions for a given 

participant, but performance decreases when trying to 

predict between two individuals. Overall, these initial results 

suggest that this BoW approach holds promise for detecting 

task-relevant states in real-world settings. 

Index Terms— Electroencephalography (EEG), Bag-

of-words (BoW) model, Participant task-load prediction. 

 

1. INTRODUCTION 

 

Interpreting brain states to improve task performance based 

on EEG recordings comprises one of the most active areas 

of research in brain-computer interfaces [1, 2, 3]. Several 

studies have successfully predicted events in EEG data 

recorded in well-controlled laboratory settings where 

participants are confined to perform a single task with 

events presented at carefully timed intervals and unwanted 

noise sources, such as eye activity and body movements, are 

intentionally minimized [4, 5]. Here, we aim to extend this 

work to classify task-relevant states in less tightly-scripted 

experiments and a more complex environment. Using data 

from a simulated security patrol mission, we investigate the  

prediction of two task-relevant states with concurrent 

tasking and variable event timing. 

In our dataset [6, 7], each participant performed the role 

of a Vehicle Commander in six simulated low-threat patrol 

missions while EEG was recorded. In each mission, the 

Commander was responsible for multiple, concurrent tasks 

(see Section 2) while he navigated among three checkpoints 

in the simulated city (Figure 1A). The frequency and 

difficulty of these tasks varied throughout the mission, 

providing time periods with infrequent tasks and less visual 

and auditory information to process (low task-load) and 

periods with high frequency task occurrence and 

overlapping visual and auditory tasks to manage (high task-

load). Six sections were identified in each mission that 

corresponded to three sections of expected low task-load 

(L1-L3) and three sections of expected high task-load (H1-

H3) as shown in Figure 1A; however, within each of these 

sections, the specific experimental events, their timing, and 

their durations fluctuated based on the inherent dynamics of 

a patrol mission. In addition, the Commander experienced 

the simulated vehicle movement on a ride motion simulator 

and freely moved his eyes, head, and arms to interact with 

two touchscreen interfaces that controlled the environment 

(Figure 1B). These design elements helped immerse the 

participant into the simulated environment [6], but they also 

introduced large non-brain signals into the dataset that are 

pervasive across the task [8]. Consequently, the complexity 

of the experimental tasks and the increased movement 

artifacts potentially makes the prediction of task-relevant 

states very challenging. 

We propose in this paper to apply the bag-of-words 

(BoW) model, a method widely used in computer vision, for 

EEG classification. The use of the BoW model is motivated 

by the similarity of our problem to those in computer vision, 

where the number, the spatial locations, and the scale of 

patterns in two images under the same category can be very 

different. This mirrors one inherent challenge of brain state 

classification where the neural responses to task-relevant 
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events vary within the same task-relevant state. Our 

analyses examined the performance of the BoW model on 

two participants. The first analysis looked at the variability 

of the optimal BoW model for one participant across five 

missions. The second analysis investigated if the trained 

classifiers were participant-dependent, while the third 

analysis examined if the predictive patterns for one 

participant are consistent across missions. Collectively, our 

results showed that the proposed BoW model produced 

good performance in differentiating low and high task-load 

sections, providing a proof-of-concept of this approach for 

detecting task-relevant states in real-world settings. 

 

 

Figure 1(A) Overview of mission: there are three low task-

load sections (L1-L3, light blue), three high task-load 

sections (H1-H3, purple), and three checkpoints (CP, white). 

(B) Soldier sitting on a six degree-of-freedom Ride Motion 

Simulator to simulate realistic movements of a vehicle. 

Photo provided by Detroit Arsenal Media Services 

 
2. EXPERIMENT AND DATA 

 

A total of 14 U.S. Army Sergeants, all male combat veterans 

of Iraq or Afghanistan, participated in the experiment at the 

Ground Vehicle Simulation Laboratory (GVSL) at the 

Detroit Arsenal in Warren, MI. Although the experiment 

was conducted using a Commander-Driver team [6], this 

analysis focuses only on the Commander, and only two 

datasets were used in this proof-of-concept analysis. A 

previous analysis using 4 seconds epoched data, the 

bandpower of multiple frequency bands (delta, theta, alpha, 

low beta and  high beta) as features and a SVM algorithm, 

examined only the auditory communications within the 

mission,  showing that classification between irrelevant 

audio messages and relevant audio messages requiring the 

Commander to respond could be performed with 67% 

prediction accuracy  [7]. 

Each participant completed six, low-threat patrol 

missions (averaging 22 minutes in duration) through a 

simulated urban desert terrain while experiencing the 

realistic movements of the vehicle on a ride motion platform 

(Figure 1B). In each mission, the Commander was 

responsible for multiple, concurrent tasks, including route 

planning and navigation, responding to various auditory 

communications about mission status and coordination, and 

maintaining local situational awareness to detect and report 

visual targets. The frequency and difficulty level of these 

numerous tasks varied throughout the mission, providing 

time periods with infrequent tasks and minimal sensory 

information to process (low task-load) and periods with 

high-frequency task occurrence and overlapping visual and 

auditory tasks to manage (high task-load). Three sections of 

each task-load level were analyzed, each approximately 3 

minutes in duration (Figure 1A). EEG was recorded with a 

64-channel BioSemi system at a sampling rate of 256 Hz, 

and four additional electrooculography channels were 

recorded. All channel data was filtered (FIR from 1 to 50 

Hz) to remove frequency domain noise, and we decomposed 

the EEG signals using Independent Component Analysis 

(ICA) [9] into 68 independent components. Time-frequency 

decomposition was subsequently applied to the IC data 

(using a highly popular algorithm based on Morlet wavelet,  

which is widely use on EEG)  resulting in a tensor of 

spectral power in 4 dimensions: power, IC, frequency, and 

time. The power in each of the six mission sections was 

normalized to the length of the respective section. 

 

3. PROPOSED BOW MODEL FOR TASK-LOAD 

PREDICTION 

 

A BoW model is a method for treating a classification 

problem as a dictionary, i.e. an unordered set of words. 

Figure 2 illustrates the three-step process we used to 

generate a BoW model: (1) identify a set of discriminate 

features, (2) construct a dictionary, and (3) train a BoW 

model and assess prediction of task-relevant states. 

 

Figure 2 Overview of BoW model generation 

 

3.1. Identification of discriminant features 

For the EEG data, a feature is signal power defined at IC, 

frequency, and time – or        . In this work, we ignore the 

temporal dependence of data, and thus a feature vector at   

can be defined as          , which contains   (IC) by   

(frequencies) normalized powers at time  . Discriminant 

features are identified separately for each pair of low and 

high sections (total of nine L-H combinations) for each 

participant. A filter-wrapper strategy as proposed in [10] 

was adopted for feature selection, where an initial feature 

ranking is determined followed by a selection step moving 

1228



down the ranked list. The initial ranking is determined by a 

t-test for each single feature at       that captures how well 

the feature discriminates a low task-load section from a high 

task-load section (power from time-frequency 

decomposition). The features are ranked according to 

ascending order of the absolute value of their  -values. 

Features are then selected using a sequential forward search 

that is performed over ranked features, where at each search 

step, one feature is added to the model, and then prediction 

performance based on cross validation is assessed after 

execution of the steps in 3.2 and 3.3 to generate a BoW 

model for that set of features. 10-fold cross validation was 

performed on the EEG data by dividing it into epochs of 500 

samples (approximately 2 seconds of data). This three step 

process was done parametrically for dictionary sizes of 2-10 

words and from 1-300 total features. 

Thus, the selected feature set for a given L-H 

discrimination are the top ranked features that achieve the 

highest performance prediction (lowest mean error rate, red 

dot in Figure 3). The BoW model based on   clusters of 

discriminant features is the final model. 

 

 
Figure 3: Plot of the error rate as a function of the numbers 

of words and top ranked features for L2 vs. H3 for 

participant 1. For this L-H pair, the best error rate is 

achieved at 2 words and 10 top features. 

 

3.2. Construction of dictionary 

Given a set of discriminant features, a dictionary   

consisting of an unordered set of “words,” or significant 

patterns of the feature vector, is created from the training 

data that is independent of L and H class labels. The patterns 

are defined as the most representative values of the feature 

vector. To identify the patterns, a  -means clustering is 

applied, and the patterns are taken as the centroid of the 

clusters. The optimal number of the clusters,  , was 

determined by cross validation as described in Section 3.1. 

 

3.3. Training and Task-load classification 

When training a BoW model, the goal is to calculate the 

respective distributions of words in the high/low task-load 

mission sections. The distribution of words for a section is 

calculated by mapping each data sample    in the section to 

the nearest word in D via Euclidian distance. The 

distribution is taken as the count of the mapped words in the 

section. Performance prediction is assessed using samples of 

EEG data with length T. For a sample       is first mapped 

to the respective nearest word pattern in D. Let    
        represent the word index for   . Prediction is then 

carried out with a Naive Bayes classifier, where the 

posterior probability of task-load type i (L or H) given the 

data, or     , is calculated as 

 

                         

 

   

 

  

                                             
   

  
      

                          (1) 

  

where      is the prior probability of observing task-load 

type      is the number of samples whose        , and      

is the probability of observing word   in task-load   
(obtained from the training). The classifier predicts the task-

load to be the type (L or H) that achieves the highest 

posterior probability             . 
 

4. RESULTS 

 

Results are described for three preliminary analyses of the 

BoW model. The first analysis looked at the stability of the 

dictionary and feature set across each pair of low and high 

sections for participant 1 across five missions. The second 

analysis examined how well the classifier trained on 

participant 1 performed on participant 2, and the third 

analysis examined how well a classifier performed across 

missions for participant 1. 

 

4.1. Investigating the best set of features and K 

In the first analysis, we examined the variability of the 

optimal BoW model across each L-H combination for each 

mission for participant 1. To this end, the procedure 

described in 3.1 and shown in Figure 3 was performed for 

each L-H pair across the participant’s five missions (one 

mission had missing data). Cross validation was performed 

on each mission independently, but the results summarized 

in Table 1 are summarized across mission. Across the nine 

L-H pairs, using 2 words consistently achieved the best error 

rate. This result implies that there exist two types of feature 

patterns that define the differences in activity between 

sections of low and high task-load, although the two 

particular patterns are not necessarily the same across the L-

H pairs. The total number of discriminating features, 

however, varies substantially between the L-H pairs, with 

feature numbers ranging from 4 to 280. 

 

4.2. Between-participant performance 

In the second analysis, we investigated if the trained 

classifiers were participant-dependent. To this end, the 

trained classifiers described in section 4.1 for participant 1 
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were used to predict the task-load for participant 2. Tests 

were carried out for the 3 L-H combinations involving L1, 

and Table 2 summarizes the results for the subset of tested 

missions. The prediction errors on participant 2 increase 

considerably for most of the missions, and these initial 

results suggest that a participant’s patterns to task-relevant 

events vary among individuals. Consequently, classifiers for 

use in complex environments may need to be trained 

separately for different participants. 

 

Table 1. Best feature set and word number 

Types Feature #  Word # Mean error rate 

L1 vs. H1 50 2 0.0633 

L1 vs. H2 30 2 0.1097 

L1 vs. H3 280 2 0.0619 

L2 vs. H1 10 2 0.0877 

L2 vs. H2 4 2 0.1345 

L2 vs. H3 10 2 0.1435 

L3 vs. H1 150 2 0.0713 

L3 vs. H2 150 2 0.0748 

L3 vs. H3 150 2 0.0887 

 

Table 2. Between-participant performance 

Task-load, Mission P#1 error rate P#2 error rate 

L1 vs. H1, 2 0.121 0.145 

L1 vs. H1, 3 0.035 0.331 

L1 vs. H1, 4 0.041 0.315 

L1 vs. H1, 5 0.089 0.227 

L1 vs. H1, 6 0.029 0.183 

L1 vs. H2, 2 0.141 0.195 

L1 vs. H2, 3 0.131 0.235 

L1 vs. H2, 4 0.031 0.215 

L1 vs. H2, 6 0.094 0.050 

L1 vs. H3, 2 0.094 0.125 

L1 vs. H3, 3 0.100 0.243 

Mean 0.082 0.206 

 

Table 3. Within-participant mean error rate across missions 

Types Mission 

3 

Mission 

4 

Mission 

5 

Mission 

6 

L1 vs. H1 0.039 0.006 0.029 0 

L3 vs. H3 0.070 0.08 0.379 0.219 

L1 vs. H3 0.041 0.006 0.029 0.032 

 

4.3. Cross-mission performance 

Finally, we investigated if the predictive patterns to task-

relevant events were consistent across the missions. To this 

end, classifiers were trained for participant 1 using data in 

mission 2 and then were used to predict task-load in the 

remaining missions. Table 3 shows the results for three L-H 

combinations. Overall, the error rates remain small and 

comparable to those for mission 2 (except mission 5 and 6 

of L3 vs. H3). Taken together, we conclude that participant 

1 engaged in fairly consistent activities across missions, but 

future work will need to examine additional mission 

segments and experimental participants to better assess the 

within-participant stability of the classifier. 

 

5. CONCLUSION 

 

We used EEG data recorded from a Soldier performing the 

role of a Commander in a simulated security patrol mission 

on a ride motion platform to examine whether a bag-of-

words (BoW) model could successfully classify task-

relevant states despite increased complexity of the 

experimental tasks and increased noise from movement 

artifacts and other non-brain signals. Our preliminary results 

suggest that low and high task-load states may be reliably 

discriminating with a few stable words, and these patterns 

are relatively stable across similar missions for the same 

participant. In the two participants studied, however, the 

classifier from participant 1 did not perform as well on 

participant 2, suggesting that the task-relevant patterns may 

vary among individuals. Future work will examine the 

contribution of brain and non-brain sources to these 

predictive, task-relevant patterns.   

More generally, our results indicate the promise of the 

BoW approach for tackling one of the inherent challenges of 

brain state classification when the number, spatial locations, 

and scale of neural responses to task-relevant events vary 

within the same task-relevant brain state. That is, BoW does 

not require tightly-scripted experiments and precise event 

timing. In fact, BoW is not limited to discrimination of two 

general brain states. Future work will examine if the BoW 

model can identify the particular types of events that 

contribute to the participant’s task-load, such as hearing an 

audio communication, seeing a visual target, or pressing 

buttons to manipulate one of his touchscreen interfaces. If 

successful, the BoW approach will provide a critical 

analysis method needed to move neurotechnology 

development into more complex environments, providing an 

avenue to improve task performance in real-world settings. 
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