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ABSTRACT

We propose in this paper a new technique to investigate the
Event-Related Potentials, or Evoked-Response Potentials, in
the electroencephalographic signal. The multidimensional
electroencephalographic signal is first spatially filtered to
enhance the Evoked-Response Potentials using the xXDAWN
algorithm and, second, the single trial latencies (whatever
their origins: physiological or electronical) are estimated by
maximizing a cross correlation without any a priori model.
The performance of this approach is illustrated on two clas-
sical P300-Speller electroencephalographic databases (BCI
Competition II and III). The single-trial distribution of P300
Evoked-Response Potential is deblurred using the proposed
resynchronization algorithm for applications in particular to
Brain Computer Interfaces.

Index Terms— Brain Computer Interface, spatial filter,
jitter compensation, single trial, Event-Related Potential

1. INTRODUCTION

Brain Computer Interfaces (BCI) allow a subject to control a
device without any muscular activity [1]. They are generally
based on the acquisition and the analysis of scalp recorded
electroencephalography signals (EEG). In several BCI sys-
tems, the subject is submitted to different classes of stimula-
tions generating corresponding cerebral responses referred as
event-related potentials (ERP) or evoked potentials [2]. The
subject is asked to choose one class of stimuli called the tar-
get stimuli. Then the BCI system provides the subject with
a mixture of target and non-target stimulations, records ev-
ery cerebral responses and detects which is the target class
that had been intentionally chosen by the subject. This de-
tection is based on the fact that the ERP related to a target
stimulation, the well-known P300 ERP, is different from the
response related to non-target stimulations. This is the princi-
ple of the famous P300-Speller BCI [3, 4]. More specifically
in the P300-Speller case, the subject is watching a screen with
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a 6-by-6 grid of 36 letters and figures and the stimulation con-
sists in highlighting randomly one row or one column of this
grid. The subject chooses one symbol and is asked to focus on
its brightness. Each time the chosen symbol column or row
is highlighted one P300 ERP is generated by the brain. P300
or P3 means that the ERP is positive and emitted roughly 300
millliseconds after the target stimulation.

Obviously, the ERP detection algorithms take advantage
of the synchronization between the stimulus and the evoked
potential. Nevertheless, the 300 milliseconds latency is not
constant and can be affected by different kinds of variability.
Firstly, the “natural” latency between the stimulus perception
and the ERP depends for instance on the current cerebral work
load. Secondly, the delay is also affected by any jitter between
the stimulation device clock and the EEG recording device
clock. This “electronic” delay can be minimized by using
specific synchronization hardware but this is complex and not
commonly done in practice. Both “natural” and “electronic”
jitter amplitude are often similar to the P300 temporal width
(i.e. several tenths of milliseconds). Consequently, it is clear
that such a jitter amplitude significantly reduces the relevance
of the estimated ERP shapes for neuroscience/cognitive in-
terpretations or the global performance of many classification
algorithms and the corresponding ERP-based synchronous
BClIs. It also prevents from merging different EEG record-
ing sessions in one homogeneous data set and can create a
discrepancy between the training and test data sets.

A solution to this problem is to resynchronize the stimu-
lations and EEG timescales. We propose to do it by achieving
a single-trial detection and resynchronization of each ERPs.
This resynchronization has several applications: assess the
jitters affecting an existing database and reduce them, merge
several EEG databases affected by inhomogeneous jitter dis-
tributions, evaluate the jitter amplitude of a given BCI device
and minimize it by tuning electronic parameters, improve
the target/non-target classification performance, improve the
characterization of the ERP distribution, detect unknown
ERPs that so far had remained hidden due to desynchro-
nization. Of course, this method can be generalized to any
detectable ERP, and any other areas where a system is char-
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acterized by investigating the responses to short stimulations.

The paper is organized as follow: the resynchronization
method using xXDAWN is described in the second section.
Section 3 shows the performance of the proposed method on
actual BCI data. Finally, Section 4 concludes this paper by a
discussion and perspectives.

2. ERP ENHANCEMENT AND LATENCY
ESTIMATION

The proposed method is based on two steps: the ERPs are first
enhanced by one-dimensional spatial filtering (Section 2.1)
and then the latency of each single trial ERP is estimated by
intercorrelation with a mean ERP profile (Section 2.2).

2.1. The xXDAWN algorithm

With P300-speller BCI paradigm, the multidimensional EEG
signal is modeled as the sum of

e the target-ERP component,

e other ERP components also related to the stimulations
(non-target ERP or the union of target and non-target
ERP for instance), and

o the remaining EEG independent of any stimulations.

Each ERP component is assumed to be also the superposi-
tion of one multi-dimensional pattern (i.e. a matrix) at the
rhythm of the corresponding stimulations. The xXDAWN al-
gorithm [5, 6] provides an estimation of each ERP pattern
and the spatial filters which maximize the relative power of
the ERP component of interest versus the other ERPs and the
remaining stimulation independent EEG.

More specifically, let’s denote Ng the number of elec-
trodes, Ng the number of EEG time samples and X the Ng x
NEg EEG signal matrix (one column by electrode). If the ERP
pattern is a Np x Ng matrix denoted A then we assume the
one-ERP EEG model

X =DA+N 1

where D is Toeplitz Ng x Np whose entries are 0 or 1; the
first column entries are 1 if the time index is the starting time
(i.e. onset) of one occurrence of the corresponding ERP, and
0 otherwise. In the case of several superimposed ERPs of
respective patterns Ay, As, etc. we have

X =D1A, + DyAs+...+ N=DA+N ()

with the same definition of the Toeplitz matrices D1, Do,
etc. and, with D the horizontal concatenation of the Dy, D>,
etc. and A the vertical concatenation of A, A,, etc. A least
squares estimation of the concatenated ERP patterns gives

A=(D"D)"' DTX 3)

Each ERP pattern Al, 1212, etc. is obtained as the correspond-
ing horizontal slice of A.

As a matter of fact, we noted that the target ERPs estima-
tions A; are often corrupted by the periodic rythm of flashes
(every 175 milliseconds in the data sets that are used below).
Therefore, we postulate that a second ERP A, is generated
synchronized to any row or column highlighting. We ob-
served in practice that this two patterns modelization and the
corresponding enhancement with the xXDAWN spatial filters
yield an estimation of A; that is acceptably immune to the
flashes steady-state visual evoked potential.

The spatial filter v; for enhancing the target-ERP of pat-
tern A; and Toeplitz matrix D; are computed as the first gen-
eralized eigenvectors which maximize the Rayleigh quotient
(a kind of target-ERP to EEG ratio)

VTA’{D?Dlﬁlv
vIRxv

“4)

Vi = arg max
v

Rx is the covariance matrix of the whole EEG signal X.

2.2. Single-trial ERP delays estimation

The spatial filter v, which yields the highest ERP enhance-
ment is generally efficient enough to allow a single-trial de-
tection of most of the P300 ERPs. The latency of each ERP
is estimated by maximizing the intercorrelation between the
ERP-enhanced EEG (i.e. Xv;) and the ERP template profile
after the same spatial filtering of the ERP pattern (i.e. Ayvy).

Note that the estimation of optimal spatial filters for ERP
enhancement (Section 2.1) is based on the a priori knowledge
of the ERP latency via the D Toeplitz matrix. Therefore, the
proposed estimation of the ERPs jitter allows a correction of
the D matrix by adjusting the stimuli onsets and the compu-
tation of corrected spatial filters. As a consequence, the full
procedure iterates the two described steps

e gpatial filter enhancing the ERPs for a given set of stim-
uli onsets

e correction of the stimuli onsets by estimating the la-
tency of each ERP.

Based on our tests (Section 3), only few iterations are neces-
sary to reach convergence (typically two).

3. RESULTS ON ACTUAL P300-SPELLER EEG DATA

The efficiency of the proposed ERP resynchronization tech-
nique is validated on two P300-Speller databases available
online: the training data set IIb of the BCI Competition II [7]
(which is generally considered as an easy set), and the more
challenging training data set II of the BCI Competition III [8].
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Fig. 1. Intercorrelation as a function of time for all the target
ERP trials of BCI II in Fig. 1(a) and BCI III in Fig. 1(b); the
different recording sessions are separated by black lines.

3.1. Databases

Both EEG data sets have been recorded at 240Hz with Ng =
64 electrodes. The P300-Speller paradigm has been imple-
mented with 15 repetitions of 2 target stimulations (the right
row or the right column of the grid is highlighted) and 10 non-
target stimulations (wrong rows or columns). The training
data set IIb of the BCI Competition II contains two sessions
(10 and 11) and several runs; all the runs of both sessions have
been concatenated to create a unique EEG signal matrix X.
The training data set II of the BCI Competition III contains
two subjects (A and B) and 85 blocks each corresponding to
85 symbols. We discarded the EEG blocks that are visually
extremely corrupted by artifacts (8 for subject A and 10 for
subject B) and concatenated the remaining 152 blocks.

3.2. Estimation of the ERP jitters

Figure 1 shows the color coded intercorrelation amplitude as a
function of the time on the x-axis and the target stimulation on
the y-axis. The different sessions, runs and/or subjects have
been separated by black lines. The target ERP jitters are very
clearly correlated to the run and the session in Figure 1(a).
Figure 1(b) shows a more discrete but systematic difference
of timing between subject A and subject B. Both figures give
an idea of the dispersion of the delays between the stimulation
and the actual generation of the target ERP.

3.3. Convergence of the proposed method

In this section, we show that the proposed iterative two steps
estimation procedure converges for the two data sets in very
few iterations. Figure 2 shows the histograms of the estimated
target ERP times of occurrence after one and two iterations.
Both first iteration histograms (left plots) show the amplitude
of the latency jitter (the width of the distribution) and the side
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Fig. 2. Histograms of P300 ERP jitter latencies after the first
(left plots) and second (right plots) iterations.

bins amplitude allow to evaluate the probability of finding
a maximum to the intercorrelation function in the necessary
limited interval of research (here from -30 to +30 and -50 to
+50 sampling periods of roughly 4 milliseconds). The second
iteration histograms (right plots) show the convergence of the
proposed two steps procedure since the jitter latencies after
the second iteration are mainly concentrated around 0.

3.4. ERP distributions characterization

The ERPs are classically identified by averaging separately
target and non-target one-dimensional EEG epochs (one elec-
trode of interest) and detecting by comparison a difference
between these temporal profiles [2]. Averaging epochs yields
the ERPs enhancement by a kind of temporal filtering. This
temporal enhancement is very efficient but the individual
ERPs are lost; single-trial characterization is no longer pos-
sible. The main interest of ERPs enhancement by spatial
filtering is that it allows the characterization of the ERPs dis-
tribution (the detection of individual ERPs are even possible
in favorable situations). This section investigates these ERP
distributions and the deblurring effect of the proposed resyn-
chronization method. The distribution of general P300 ERPs
and the specific case of two successive P300 ERPs (close
target stimulations) are shown.

In all this article, the figures presenting the distributions of
ERPs are built in the same way. All the epochs of the ERP of
interest are selected in the enhanced channel (i.e. Xv1), then
these epochs are superimposed and histograms are computed
on each column. In few words, the distribution figures show
the color-coded density of ERP trajectories in each pixel.

Figure 3(a) shows the general P300 ERP distribution in
the data set IIb of the BCI Competition II without resyn-
chronization (bottom plot) and with resynchronization (top
plot). The P300 ERP variability and its ability to be detected
by thresholding can be evaluated on these figures. Figure
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Fig. 3. P300 ERP distribution without (bottom plots) and with
(top plots) resynchronization. The data set IIb BCI II is in
Fig. 3(a) and the data set Il BCI III in Fig. 3(b).
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Fig. 4. Successive P300 ERP distributions without resynchro-
nization, data set IIb BCI II. From top to bottom, the target
stimulations are separated by 175, 350, 525, 700 and 875 m:s.

3(b) shows the same distributions but using the data set II
of the BCI Competition IIT without and with resynchroniza-
tion, which illustrates the variability of the P300 ERP from
one data set to another and from one subject to another.

When two successive target stimulations are very close
in time (here 175 milliseconds) the second ERP is slightly
delayed and of lower amplitude. Figures 4 and 5 illustrate this
physiologic phenomenon by showing the corresponding ERP
distributions. In this case too, the resynchronization deblurs
the distribution by compensating latency jitters.

4. RELATION TO PRIOR WORK & DISCUSSION

The ERP latency jitter estimation is an old issue in neu-
roscience and its estimation dates back to the late sixties.
Woody [9] estimates the single trial P300 latencies by max-
imizing the cross-correlation between the one dimensional
EEG signal (one electrode) and a P300 template (generally
a sine wave). Jaskowski [10] proposes to jointly estimate
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Fig. 5. Successive P300 ERP distribution without resynchro-
nization, data set II BCI III. From top to bottom plots, the tar-
get stimulations are separating of 175, 350, 525, 700, 875ms.

the single trial latency and amplitude of P300 via maximum
likekihood approach used by Pham [11] for other ERPs. More
recently, Li et al. [12] uses spatial filtering to improve the
signal (P300) to EEG ratio; latencies and amplitudes are also
estimated by maximizing cross correlation between the trial
and a model of P300 involving gamma functions. On the
contrary, our approach is only based on the EEG data and
makes no assumption on the P300 profile (i.e. no parametric
model as gamma functions), which is directly estimated from
the data using the xDAWN algorithm. It allows in particular
to provide an estimation of the ERPs distribution instead of a
priori model parameters. The proposed method, based on the
xDAWN algorithm, also takes into account the possible inter-
classes overlapping when estimating the ERP profile used
for the resynchronization. Finally, the resynchronization step
provides more accurate spatial filters since the output signal
to noise ratio (4) is higher after few iterations than without
latencies jitter estimations.

A new method for compensating the latency jitter between
a stimulation event and the corresponding EEG event-related
potential (ERP) is proposed. This iterative technique shows
its good convergence behavior since only a few number of it-
erations (typically one or two) are necessary. Coupled with
the ERP enhancing spatial filtering algorithm xXDAWN, it al-
lows to deblur efficiently the ERP distributions. Several ERPs
are investigated: the P300 and two successive P300 with sev-
eral delays between them. The performance of the method
are shown on two classical P300-Speller EEG databases of
different difficulty.

The proposed technique allows to estimate accurately the
ERP times of occurence when these ERPs are approximately
localized in time (the target stimulation times are known in
the P300-Speller training data sets used here). It would be of
main interest to extend this method to contexts where this a
priori knowledge is unknown like in BCI test data sets.
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