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ABSTRACT

Emotion recognition from EEG signals allows the direct
assessment of the “inner” state of the user which is con-
sidered an important factor in Human-Machine-Interaction.
Given the vast amount of possible features from scalp record-
ings and the high variance between subjects, a major chal-
lenge is to select electrodes and features that separate classes
well. In most cases, this decision is made based on neuro-
scientific knowledge. We propose a statistically-motivated
electrode/feature selection procedure, based on Cohen’s ef-
fect size f2. We compare inter- and intra-individual selection
on a self-recorded database. Classification is evaluated using
quadratic discriminant analysis (QDA). We found both fea-
ture selection versions based on f2 yield comparable results.
While highest accuracies up to 57,5% (5 classes) are reached
by applying intra-individual selection, inter-individual anal-
ysis successfully finds features that perform with lower vari-
ance in recognition rates across subjects than combinations
of electrodes/features suggested in literature.

Index Terms— Emotion Recognition, EEG, Feature Se-
lection, Machine Learning.

1. INTRODUCTION

To make Human-Machine-Interaction (HMI) more natural,
knowledge about the emotional state of the user is considered
an important factor. Emotions are important for both correct
interpretation of actions, as well as communication. Beyond
its application in HMI, research in emotion recognition can
lead to a deeper understanding of emotion mechanisms them-
selves.

The field of emotion recognition from Electroencephalog-
raphy (EEG) signals is comparatively new, but is gaining
more and more attention in recent years. Bos investigated the
influence of different stimuli modalities on extreme classes of
the valence/arousal plane using two frequency-based features
for linear classification [1]. Schaaff and Schultz compared
two sets of features recorded with an in-house developed
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headband [2]. Classifying three emotional states using sup-
port vector machine (SVM), they reached a mean accuracy of
44 and 49%. Li and Lu found gamma-band features to sepa-
rate two classes (happy and sad) well using common spatial
patterns and SVM. Recently, Murugappan et al. published
work on a collected dataset from 64 channels over 5 subjects
and 4 emotions. They give an overview on earlier work in the
field and introduce wavelet domain features [3].

A major challenge in emotion recognition from EEG sig-
nals relates to interpersonal variance in both emotion induc-
tion and recognition. It is not in general agreed upon which
features are most appropriate. Different people show different
emotional responses and thus, different features of the EEG
data carry the best information for recognition. Additionally,
the vast amount of possible features makes it necessary to re-
duce dimensions in order to avoid over-specification.

Typically, electrode selection is done on the basis of
neuro-scientific assumptions. In contrast, we propose a
statistically-motivated approach to select electrodes and fea-
tures. In particular, Cohen’s effect size f2 is used as a
measure of separability. This method can be interpreted as
a univariate filter-method for feature selection [4]. To assess
the generality of commonly used features and to possibly
extend the set of electrodes that promise good classification
accuracy on an inter-individual basis, we recorded a database
from 16 subjects. We investigate differences in classification
success rates between features selected based on statistical
properties and those given in literature.

The remainder of the paper is organized as follows: the
dataset (Sec. 2) and processing steps for artifact removal
(Sec. 3) and feature extraction (Sec. 4) are introduced first.
Section 5 describes the selection method. Classification and
results are given in Sec. 6, followed by discussion and future
work in Sec. 7.

2. AFFECTIVE DATABASE

In contrary to most investigations in literature, we aimed for a
dataset with enough subjects to draw conclusions on an inter-
individual basis. Thus, the recorded dataset consists of 16
subjects, each containing 8 trials of 30s EEG recording for 5
different emotions (happy, curious, angry, sad, quiet). A 64-
channel EEG cap with g.tec gUSBamp was used for record-
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Table 1. Features typically extracted for emotion recognition from EEG are listed. mean, min, max, and var are used for fre-
quency domain features. Activity, Mobility, and Complexity are known as Hjorth Features. Grayed rows are not implemented.

Feature Description Commonly used electrodes Electrodes from f2
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Theta-Band 4-8Hz left anterior sites [5] Fz, Cz, FT9, F9, CP3,
right posterior sites CP1, C5, P9, CP2, CP5

Alpha-Band 8-12Hz occipital sites
Fp1, Fp2, F7, F8 [2]
(for theta-, alpha-, beta-bands)
F3, F4 [1]

Beta-Band 14-30Hz F3, F4
Gamma-Band 43-68Hz all electrodes [6] F4, F8, F6, F2, Fz, FC2, FC6,

TP9, CP1, F1, C3, CP3, TP7
Magnitude Squares Coherence Estimate P3, P4, T7, T8, C3, C4, F3, F4 [7]
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n Power of Signal P (x) = 1
N

∑

∞

−∞
|x[n]|2 main lobe [8]

Activity A(x) =
∑N

n=1
(x(n)−µ)2

N
CP5, CP6, F3, F4, Afz [9]

Mobility M(x) =
√

var(ẋ)
var(x)

CP5, CP6, F3, F4, Afz

Pz, P8, Fz, O1, F3 [10]
Complexity C(x) = M(ẋ)

M(x)
O2
CP5, CP6, F3, F4, Afz [9]

Wavelet domain all electrodes [3]

ing at 512Hz. Similar to Schaaff and Schulz [2], the emotions
were induced using IAPS pictures [11]. Sets of 4 pre-selected
pictures of one emotion were shown for 5s each in every trial.
For validation of induction, we compared the results of SAM-
Tests (Self-Assessment-Manikin Test [12]) with the targeted
values of the presented picture sets and received an average
correlation coefficient of r = .545. Excluding subjects with
r-values lower than .5 (i.e. 4 subjects), the correlation coeffi-
cient increased to r = .632.

Pre-studies showed that it takes about 10s for an emotion
to be induced using pictures and to last for about 4s. Thus,
time intervals between 11-15s after emotion induction onset
are considered in the following analysis.

3. ARTIFACT REMOVAL

As a preprocessing step, we investigated the benefits of re-
moving artifacts from the signal. The Independent Com-
ponent Analysis (ICA) based plug-in ADJUST [13] for
the MATLAB Toolbox EEGLAB [14] was used to iden-
tify and remove different kinds of artifacts: eyeblinks, eye-
movements, drift, and generic discontinuities. The algorithm
first transforms EEG data into Independent Components
(ICs). In the Selection Process, artifact-affected components
are detected and discarded automatically by a set of rules and
thresholds within ADJUST. Finally, the inverse transforma-
tion of the remaining components is computed. In addition to
the default settings, we extended the detection algorithm to
variable thresholds that are adjusted for each user so that at
least 95% of the trials have a signal range between ±100µV
after removal, i.e. are within the range of a clean signal.

4. FEATURE EXTRACTION

We implemented a variety of EEG features from literature
to compare our approach to results obtained by those feature
sets. Table 1 lists the considered features from related work.
We extracted mean, min, max, and var from the frequency
domain features, which are computed using FFT. Both fre-
quency and time domain features were extracted from all 64
electrodes which results in a total of 1344 features. Features
are z-normalized to zero mean and standard deviation equal
to one. In the equations given in Table 1, x ∈ R

N denotes the
vector of the signal of a single electrode, N is the number of
time-samples in x, i.e. 2048 in our specific case. A feature of
x is denoted as ξ.

5. ELECTRODE AND FEATURE SELECTION

For electrode and feature selection, we use Cohen’s effect size
f2 which is a generalization to more than two classes of Co-

hen’s d =
∣

∣

∣

ξ̄1−ξ̄2
σ

∣

∣

∣
used for the statistical t-test [15]. The

spread of the means in the numerator is represented as a stan-
dard deviation σm. The denominator remains the pooled stan-
dard deviation σ of the populations involved. Thus,

f =
σm

σ
, where σm =

√

∑c

i=1
(ξ̄i − ξ̄)2

c
(1)

for equal sample sizes per class. Here, ξ̄i and ξ̄ are the mean
of the samples belonging to class i and the overall mean of a
feature, respectively. The number of classes is denoted by c,
i.e. 5 in our case.
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Fig. 1. (a) Mean (colorbar) and variance (radius of black circle) of f2 over all subjects; each plot corresponds to one feature,
(b) Examples of features (feature identifier in parenthesis) showing low/high mean combined with low/high variance of f2.

Wilk’s Lambda Λi [16], which has also been applied for
feature selection in a different domain, is directly related to
the effect size: f2 = (1 − Λi)/Λi. Yet, this measure is not
as commonly reported as effect size. Further, significance
or test statistics have been proposed for feature selection [4].
We argue, however, that effect size makes more sense since it
does not depend on the sample size and is thus useful also for
meta-studies.
We implemented two versions of feature selection using f2

to measure separability of a feature: 1) inter-individual: f2

is computed for each electrode per feature and is averaged
over all 16 subjects for feature/electrode selection, 2) intra-
individual: f2 is computed and used to select electrodes and
features individually for each subject.
Fig. 1(a) depicts the mean (color) and variance (radius of
black circle) of the effect size of each electrode and fea-
ture averaged over all subjects and mapped to the electrode
positions on the scalp. Considering scores individually, f2

reaches values up to 1.47 while averages across subjects are
around .2. This means, that in cases where mean and vari-
ance of f2 are high (H-H), a feature is only suitable for few
(or even one) subject (see Fig. 1(b)), but does not separate
classes well for other subjects. Meanwhile, features scoring
high f2 values and low variance (H-L) are considered gen-
erally suitable across subjects. It should be noted that this
causes a bias in the case of inter-individual selection. Using
the median of f2 instead would correct this deviation with-
out completely ignoring the outliers. Tests with this method,
however, resulted in comparable accuracies while requiring a
larger number of features, which is why we kept the mean as
inter-subject selection criteria (further discussion in Sec. 7).
In the right column of Table 1 we list the electrodes for each
feature that exceed a threshold of .2 for the mean of f2 mea-

sures. Notably, some features, e.g. the complete α-band,
score very low values of f2 for all electrodes.

6. CLASSIFICATION AND EVALUATION

To evaluate the proposed selection method, classification
is performed by means of quadratic discriminant analysis
(QDA) with diagonal covariance estimates (i.e. Naive Bayes).
We use 8-fold cross validation, where 7 folds are used for fea-
ture selection and classifier training, the remaining fold (i.e. 1
sample from each class) is used for testing. In inter-individual
analysis, f2 measures are precomputed for each fold and av-
eraged over all subjects, before the classifier is trained with
the selected features for each subject individually. Given 5
classes, chance level is at 20%. We found the effect of artifact
removal to be marginal and thus, it is not reported here for
brevity. The study showed that satisfactory results can also
be obtained without cleaning the data.

In Fig. 2 the results from inter-individual analysis are pre-
sented. We compared our approach to electrodes and features
suggested in [9] (Feature Set FS1: Activity, Mobility, and
Complexity from electrodes CP5, CP6, F3, F4, Afz) and [2]
(FS2: ᾱ, max(α), θ̄, β̄ from electrodes Fp1, Fp2, F7, F8). To
be fair, we looked at the same number of dimensions used,
i.e. 15 and 16, respectively. FS2 reaches a maximum accu-
racy of 50% for one of the tested subjects compared to 45%
for our proposed approach. However, electrodes and features
selected by the effect size measure show generally higher ac-
curacies (see last plot in Fig. 2) and, compared to FS2, smaller
variance across subjects.

A comparison of the achieved classification accuracy for
inter- and intra-individual selection is depicted in Fig. 3.
When accounting for personal differences (intra-individual
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selection) in emotional responses, classification results im-
prove especially for small numbers of features. Improvement
was not so much pronounced for subject 1, 2, 4, and 9, as for
subject 5, 6, 8, and 10. A maximum of 57,5% accuracy is
reached by subject 10 using only 2 out of the 1344 possible
features. However, since the ideal number of features varies
between subjects, average accuracy over all subjects showed
only small improvements compared to inter-individual anal-
ysis (intra: ≈ 30% vs. inter: ≈ 27%). Generally, the curse
of dimensionality is clearly visible, as accuracy mostly de-
creases for an increasing number of features.
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Fig. 2. Classification success rates (color) for 16 features
evaluated for multiple subjects compared to those suggested
in literature. The bottom graph shows the average accuracies.

7. DISCUSSION AND FUTURE WORK

This paper explored electrode and feature selection for EEG
signals based on statistical properties. A univariate feature
selection method using Cohen’s effect size f2 from analysis
of variance was implemented to investigate automatic elec-
trode and feature selection. The selection of electrodes and
features from a statistical point of view proved to be a useful
extension to merely relying on neuro-scientific findings. Elec-
trodes and features found by this approach resulted in smaller
variance of classification accuracies across subjects and gen-
erally higher accuracies when features were selected intra-
individually compared to an inter-individual selection. The
strong interpersonal variance of emotions is not always ob-
vious from other studies, since many consider small datasets
with one or very few subjects only (e.g. [9]). Notably, when
comparing to traditionally used features and regions of the
brain, our results suggest partially different, better separating
features or regions.

Using the median instead of the mean to counter the issue
of high variance in f2 did not improve results. A possible
reason for this observation is the likely interaction of features
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Fig. 3. Classification results based on inter-individual (above)
and intra-individual (below) electrode and feature selection.

which is not considered by univariate methods. Hence, ongo-
ing and future work will include the development and com-
parison of more advanced and multivariate feature selection
methods, taking into account dependencies between features.
Further, in order to make the recognized emotion computa-
tionally easy to process, methods that enable classification in
continuous space (e.g. PAD model [17]) should be developed.
We are currently also preparing to make this database publicly
available to other researchers.

8. RELATION TO PRIOR WORK

The presented work applies automatic, statistically-motivated
electrode and feature selection to emotion recognition from
EEG signals on a self-recorded dataset with 16 participants
and 5 different emotions. Work by Ansari-Asl et al. reports
results of the application of synchronization likelihood for
electrode selection which was tested on one subject only [9].
Recently, Kroupi et al. did a study on EEG correlates of emo-
tional states labeled in continuous space [18]. Different fea-
tures were correlated with a self-assessed emotional measure.
In agreement with our results, their subject-dependent analy-
sis revealed strong interpersonal differences in the brain acti-
vation patterns. Similarly, Li and Lu noticed these differences
across subjects, when applying a wrapper method to find op-
timal frequency bands [6]. Their approach, however, did not
consider simultaneous selection of features and electrodes.
The presented approach can be extended by including more
complex features like Higher Order Crossings as suggested
by Petrantonakis and Hadjileontiadis [19]. Finally, Deriche
introduced a feature selection method specifically for EEG
analysis based on maximizing mutual information [8]. This
method has not been applied to emotion recognition, yet, and
would be a promising method for future work.
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