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ABSTRACT 

 

Recent advances in Joint Blind Source Separation (JBSS) 

extend the BSS framework to the simultaneous source 

separation of multiple datasets. In this paper we provide a 

comparative study of four such JBSS algorithms on human 

dual-electroencephalographic (dual-EEG) data.  

Appropriateness of second order JBSS is demonstrated for 

concurrent estimation of correlated sources in a multi-

subject synchronous steady-state visually evoked potentials 

experiment. This approach gives a new starting point for the 

exploration of brain activities in a hyperscanning 

framework. 

 

Index Terms— Hyperscanning, joint BSS, SSVEP, dual-

EEG, Brain Coupling. 

 

1. INTRODUCTION 

 

Blind Source Separation (BSS) finds major use in many 

application fields such as biomedical engineering, 

telecommunications, or audio, acoustics and speech 

processing [1]. This data-driven approach consists in 

estimating unobserved sources from a single set of multiple 

linear mixtures with minimal a priori knowledge. Now what 

if one seeks for a simultaneous separation of sources from 

multiple datasets? This question was addressed recently in 

the signal processing community with applications in speech 

processing [2] and medical data analysis [3,4,5].  

The extension of BSS to multiple data sets –devised 

“Joint Blind Source Separation” (JBSS)– provides a natural 

framework for group inferences in medical imaging data 

collected from multiple subjects, or for data fusion from 

multiple modalities [6]. In this paper, we highlight its 

special interest in real-world scenarios where data are 

recorded from two or more subjects simultaneously, a recent 

neuro-imaging modality coined as “hyperscanning” [7]. 

Hyperscanning allows the study of both intra- and inter-

subject cerebral processes through the joint analysis of data 

acquired from all individuals during social interaction. Most 

EEG-hyperscanning studies have performed analysis at the 

sensor level, although this may be inappropriate in many

respects. From a physiological point of view, due to high 

individual variability of the cortical folding there is no 

reason to assume that similar neural activity in different 

subjects results in the same EEG pattern on the scalp. From 

a statistical point of view, making inferences from all pair-

wise sensor synchronicity measures decreases statistical 

sensitivity and leads to ad hoc clustering procedures to 

reduce the data dimension (e.g. [8,9]). In this manuscript, 

we show that JBSS provides an appropriate framework for 

analysis of EEG-hyperscanning data at the source level. 

Using hyperscanning, neuroscientists assume that neural 

activities are (at least in part) dependent across subjects in a 

given experimental situation. Why not incorporate this 

additional prior knowledge on source distribution when 

addressing the BSS problem? This can be done by imposing 

cross-correlation or higher-order source dependence across 

datasets. Keeping the assumption of source independence 

within datasets, JBSS exploits such coupling resulting in 

performance beyond what is achievable with single-set BSS 

applied to each dataset individually [10]. 

In this paper, we evaluate the appropriateness of using 

JBSS algorithms for the analysis of hyperscanning data. To 

do so, we acquired EEG data during a two-subject steady-

state visually evoked potentials (SSVEP) experiment. 

SSVEPs are natural responses of the visual cortex in which 

the neuronal activity becomes phase-locked to external 

visual stimulations ranging from 3.5 Hz to 90 Hz (for a 

review, see [11]). Here, subjects were stimulated 

simultaneously with trains of 10 seconds of flash 

stimulations at specified frequencies of 8 or 13 Hz. In this 

experimental set-up, it is of particular interest that SSVEPs 

were synchronously elicited in both brains. Hence visual 

cortices were implicitly coupled to each other by means of a 

common external trigger, i.e. their neural activities were 

assuredly phase-locked at specified frequencies.    

Experimentally controlled brain-to-brain coupling 

during simultaneous visual stimulation gives a relevant 

framework for EEG data analysis using joint BSS. To some 

extent it provides us with a benchmark for the comparison 

of multiple second order (J)BSS algorithms on real-world 

data. Using prior knowledge of the frequencies of flash 

stimulations, we compare the performances of different 

algorithms based on 1) measures of mean squared coherence 

(MSC) between inter-subject pairs of source estimates, and 

2) source frequency fitting to expected SSVEPs spectrum. 
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Figure 1. Illustration of JBSS applied to dual-EEG data. When using cospectral information, assumptions on 2nd order source 

dependence across datasets and 2nd order source independence within datasets enable to estimate the two demixing matrices. 

Specifically, we hypothesize that JBSS algorithms should 

give better results than single-set BSS in the extraction of 

SSVEP components, benefiting from source cross-

correlation between subjects.   

 

2. METHOD 

 

2.1. Joint BSS problem statement 

In JBSS two main assumptions are made on source mixture 

model. First, we keep the typical BSS constraint implying 

independent sources when they belong to the same dataset. 

Second, JBSS incorporates additional prior knowledge on 

source distribution in assuming cross-correlation or higher-

order source dependence across datasets. An additional 

assumption is made in imposing source alignment, i.e., the 

order of corresponding sources estimates must be the same 

for all datasets. This last constraint leads to a one-to-one 

correspondence of sources between datasets. Although 

permutation ambiguity is still present when separating 

sources, in the mixture model permutation is forced to be 

identical for every dataset. The three aforementioned 

hypotheses imply a multi-diagonal structure on matrices of 

source statistics; see Fig. 1 for an illustration. Second order 

JBSS algorithms deal with this separation problem in jointly 

diagonalizing multiple datasets of source statistics.  

We now formulate the JBSS problem. There are M 

datasets, each formed from linear mixtures of P independent 

sources, each containing T samples. We assume the 

following generative model for the data: 

    ( )        ( )                                 ( ) 

                      
    ( )    

        
         ( )    

    

In the specific case of dual-EEG,      ( ) is a vector of N 

electrode signals sampled at time   and we have M=2 

datasets. Index k refers to different observations available 

for each signal, or different statistics computed from these 

signal, e.g., cospectral matrices at specified frequencies. 

    ( ) is a vector holding the  th
 time sample of P≤N 

source components. Am is a time-invariant full column rank 

mixing matrix applied to the  th
 set of source components. 

Notice that the mixing matrix is specific to each dataset, but 

is the same for each dataset along the K statistics layers. 

This model is an extension to multiple datasets of the typical 

joint diagonalization model found in the BSS literature. It 

reduces to the standard BSS model when only one dataset is 

available (M=1). 

Here, as in BSS of single datasets, the sources and the 

mixing matrix can only be identified up to an arbitrary 

scaling ambiguity [1]. However with JBSS we impose an 

alignment of sources across datasets i.e., 

 ̂          where P is an arbitrary permutation matrix 

that is common to all datasets and    is a full rank diagonal 

matrix. 

To apply JBSS we estimate K[M(M+1)/2] matrices of 

statistics. From Eq. (1) these matrices are of the form: 

          
                                              ( ) 

         ,         

Λij matrices are the unknown source statistics and are 

supposed all diagonal. In order to estimate the M demixing 

matrices we seek the pseudo-inverse of the mixing matrices 

forming all BiCij,kBj
T 

products yielding as much as possible a 

diagonal form. This implies that the output statistics within 

datasets (i.e., for i=j) are diagonalized as in the BSS 
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framework, we denote these “intra-statistics”. In addition, 

the output cross-statistics between datasets (i.e., for i≠j) are 

also diagonalized, we denote these “inter-statistics”.  

 

2.2. Presentation of the algorithms 

In this comparative study we ignore higher-order statistics 

and focus on second-order statistics only, since they 

adequately capture induced EEG activity [12]. Therefore we 

chose algorithms that exclusively exploit sample-to-sample 

dependence (i.e. source coloration) to improve source 

separation. Here we tested one state-of-the-art single-set 

BSS algorithm (U-WEDGE) and three JBSS algorithms 

(JDIAG-SOS, OJoB, NOJoB). To the best of our 

knowledge, to date there are no other JBSS algorithms 

exploiting sample-to-sample dependence. 

U-WEDGE [13] is a non-orthogonal least-square 

approximate joint diagonalization (AJD) algorithm with fast 

implementation based on Gauss iterations. JDIAG-SOS [14] 

is an orthogonal algorithm that iteratively solves orthogonal 

Procrustes problems for the AJD of 2
nd

 order statistics, and 

then performs a gradient search when M is small. OJoB and 

NOJoB [15] are, respectively, orthogonal and non-

orthogonal JBSS algorithms based on power iterations. All 

the aforementioned JBSS algorithms seek to minimize off-

norm cost functions in the least-square sense as described 

here below (4). However, they differ in the part of the 

criterion that is minimized, i.e., the type of source statistics 

used to achieve separation. Indeed, in JBSS the cost 

function can be divided into two terms [14,15]:  

 (  )  ∑        (  )

 

   

         (  )              ( ) 

where 

      (  )  ∑‖   [           
 ]‖

 

 
 

   

                 ( ) 

and 

      (  )  ∑∑‖   [           
 ]‖

 

 
 

   

 

   

             ( ) 

 

In the above formulas off(X) sets the diagonal elements of X 

to zeros and || ||F denotes the Frobenius norm. Note that 

      (5) is actually a sum of classical joint diagonalization 

costs for BSS, where one only deals with intra-statistics to 

achieve separation. When solely        is considered, 

extracting sources from multiple datasets simply amounts to 

performing BSS on each dataset separately. This cost is the 

one used in U-WEDGE algorithm. By contrast, JDIAG-SOS 

relies on inter-statistics in the minimization of cost        

only, and then minimizes the whole cost function when M is 

small [14]. Finally, OJoB and NOJoB algorithms seek 

simultaneous minimization of        and        in 

considering the whole cost function (4). Overall strategies 

for JBSS consist in performing an alternating search for 

each matrix Bm and iterate until convergence. 

 

2.3. Processing workflow 
EEG data were acquired at sampling rate 128Hz using 

separate reference and ground with 16 electrodes for each 

subject. Amplifiers were connected to the same clock, which 

guaranteed synchronous recordings. Cospectra were 

estimated for each SSVEP periods by means of Welch’s 

method with 75% overlapping Hamming windows of 512 

points, i.e. frequency resolution of 0.25Hz. Cospectral 

estimates were then averaged over 30 flashing periods with 

length 10 seconds at 8 or 13 Hz. Finally (J)BSS was applied 

on these cospectral matrices selected in range 5-28Hz only. 

We next quantify the frequency-specific 

synchronization between inter-subjects pairs of source 

estimates using mean squared coherence [16]. MSC 

measures the linear correlation between two time series at 

each frequency. At a given frequency, if the phase of one 

signal is fixed relative to the other then the signals generally 

have a high coherence. We processed coherence in a pair-

wise fashion for all P
2
 source combinations between 

subjects. This last procedure accounts for possible source 

permutations in the case where algorithms do not manage to 

align the estimated sources across subjects. Pairs of source 

estimates were then sorted based on their average MSC 

value at flashing frequencies and their first harmonics 

(CohFLASH). This spectral fitting measure enables to identify 

coupled SSVEP sources across subjects and to quantify this 

coupling in terms of squared coherence. Finally we derived 

a simple discrimination score for SSVEP sources estimation 

as the ratio of CohFLASH(1
st 

pair) to CohFLASH(2
nd

 pair). High 

discrimination score means that SSVEP sources were 

selectively extracted within the first source pair, while other 

pairs do not report about neural activity phase-locked to 

flashing stimuli. 

 

3. RESULTS 

In this section we detail the behavior of tested algorithms for 

the extraction of SSVEP source estimates in both subjects. 

Fig. 2 (left) shows the MSC profiles of inter-subjects pairs 

of sources that best explain the flashing frequencies. All 

algorithms display a high coherence in these frequencies, 

suggesting that they were able to capture the SSVEP source 

of activity. They retrieved high MSC values in both flashing 

frequencies and their harmonics, a result consistent with 

literature on SSVEPs [11]. If we confine the analysis to the 

best matching pairs of source estimates only, the important 

overlapping of coherence profiles seems to indicate that 

tested algorithms exhibit close performances. In order to 

have a complete view of the separation and its quality, one 

should take a closer look to the other pairs of source 

estimates as well. As depicted in fig. 2 (right), average MSC 

in flashing frequencies of the 10 first pairs does not exhibit 

the same behavior between algorithms. While for JBSS 

algorithms MSC decrease quickly after the first pair of 

source estimates, it is not the case for U-WEDGE BSS 

algorithm for which pairs 2 to 10 show the highest MSC 

among the algorithms used. This means that SSVEP source 
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was split into numerous components during the extraction. 

We can summarize this behavior sketching the 

discrimination score and average MSC for the best pair of 

source estimates (Fig. 3). Here NOJoB algorithm provides 

superior performance in average, with the largest coherence 

for first pair of source estimates and best discrimination of 

SSVEP flashing frequencies. Interestingly, all JBSS 

algorithms have their most coherent source pair aligned, i.e. 

indexes of these source estimates are the same for each 

subject. On the opposite, U-WEDGE displays a source 

permutation for its most coherent pair across subjects.  

Finally, we also tested AJSVD algorithm proposed in [3], 

which gave very similar results to JDIAG-SOS, probably 

because both minimize similar criterion with the same 

orthogonality constraint. 

 

 

 

4. DISCUSSION  

In this comparative study we studied the effectiveness of 

the JBSS approach over a single-set BSS in the context of 

EEG-hyperscanning SSVEP source extraction. The central 

issue in choosing a specific analysis approach is which prior 

knowledge about sources is used to achieve “blind” 

separation. The algorithms presented here differ with respect 

to this point. Since it is based on intra-statistics only, state-

of-the-art U-WEDGE BSS algorithm cannot take advantage 

of source cross-correlation between datasets. In contrast, all 

JBSS algorithm do consider source inter-statistics in their 

cost function. In other words, with the JBSS approach one 

can benefit from additional information on sources. Of 

course, such supplementary prior knowledge is appropriate 

only if it fits well the behavior of unobserved sources. With 

SSVEP source extraction in a dual-EEG framework, it 

follows that JBSS approach naturally gives better results 

than single set BSS as we know that brain coupling exists 

between the subjects at SSVEP flashing frequencies. 

A major advantage of JBSS over single-set BSS also lies 

in the implicit alignment of coupled sources across datasets. 

Solving the permutation ambiguity, JBSS eases the joint 

analysis of hyperscanning data and enables to avoid multiple 

comparisons and clustering procedures when applying inter-

subject connectivity measures. 

Another important issue is the orthogonality constraint 

on the demixing matrices. Whilst this constraint allows us to 

develop simple and computationally more efficient 

algorithms, it also limits the solution space examined. Since 

dropping the orthogonality constraints results in more 

degrees of freedom, a better fit to the model is to be 

expected. When the model is an adequate description for the 

data, this results in better performance. 

Finally, we can ask whether it is appropriate to 

incorporate proper weights for the intra- and inter-statistics. 

Depending on the situation, useful information for source 

separation may be contained predominantly in the intra- or 

the inter-statistics. Whether a normalization step is 

necessary to optimally balance the inter- and the intra- 

statistics, will be a topic of our future studies. 

 

 

5. CONCLUSION 

In this comparative study, appropriateness of JBSS was 

demonstrated for joint estimation of coupled sources of 

SSVEPs from multiple subjects. The performance of 

different algorithms was discussed in terms of choice of 

criterion and orthogonality constraint on demixing matrices. 

Results support the idea of a general efficiency of joint BSS 

for problems involving incoherent sources within datasets 

and coherent sources between datasets. This approach gives 

new insights into JBSS relevance for the extraction of brain 

sources in a hyperscanning framework. 

  

Figure 2. Left: coherence profiles of pairs of source estimates. Best pairs were chosen in terms of highest spectral fitting to SSVEP 

flashing frequencies. Grey dotted lines correspond to flashing frequencies at 8 and 13 Hz and their corresponding harmonics. Right: 

MSC concentration in SSVEP flashing frequencies (CohFLASH / CohTOTAL) for the 10 first pairs of sources estimates.  

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

C
o

h
e

re
n

ce
 w

it
h
in

 S
S

V
E

P
 f

re
q

u
e

n
c
ie

s
 (

%
)

Pairs of source estimates sorted by mean coherence value

 

 

U-WEDGE

OJoB

NOJoB

JDIAG-SOS

Figure 3. Light gray, left axis: discrimination scores for source 

extraction. Dark gray, right axis: MSC concentration in SSVEP 

flashing frequencies for the first pair of source estimates 
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