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ABSTRACT
This paper presents a novel estimation method of segments includ-
ing vocals in music pieces based on collaborative use of features
extracted from electroencephalogram (EEG) signals recorded while
users are listening to music pieces and features extracted from these
audio signals. From extracted EEG features and audio features, we
estimate segments including vocals based on Support Vector Ma-
chine (SVM) by separately utilizing these two features. Further-
more, the final classification results are obtained by integrating these
estimation results based on supervised learning from multiple ex-
perts. Therefore, our method realizes multimodal estimation of seg-
ments including vocals in music pieces. Experimental results show
the improvement of our method over the methods utilizing only EEG
or audio features.

Index Terms— electroencephalogram (EEG), multimodal
scheme, classification, vocal segment.

1. INTRODUCTION

Recently, various services are provided to search music pieces which
users desire from huge amount of music pieces. Generally, these ser-
vices use metadata of music pieces such as singers’ names (often re-
ferred to as artists’ names), the genre of music pieces, and the mean-
ing of lyrics. However, if such metadata are not attached to music
pieces, it becomes difficult for conventional services to find out de-
sired music pieces. In order to solve these problems, it is necessary
to provide metadata to music pieces automatically, and we consider
these data can be extracted from segments including vocals. There-
fore, in this paper, we focus on estimation of these segments, and try
to identify the segments where singing voices exist with instrumental
accompaniment (vocal segments).

There have been proposed several vocal segment estimation
methods [1, 2]. Generally, these methods utilize only audio features
extracted from audio signals and input these audio feature vectors
into classifiers. However, since their estimation accuracy is not sat-
isfactory, it is necessary to improve the performance of classifiers by
using new efficient audio features and introducing a new idea which
uses the features extracted from signals other than audio signals.

In the fields of engineering, various trials, which analyze the re-
lationships between music pieces and electroencephalogram (EEG)
recorded while users are listening to music pieces, have intensively
performed [3–5]. Especially, in [3], they propose an EEG-based
emotion recognition method. In this method, it is reported that music
stimuli affect the human brain and the effects are observable as EEG
signals. Therefore, we can assume that there is validity in a method
of utilizing EEG signals for the estimation of vocal segments. How-
ever, the conventional EEG-based method [3] is unimodal, and the

performance is also limited. So far, there have been no studies where
EEG signals are collaboratively utilized with other signals.

In this paper, we propose a novel vocal segment estimation
method based on collaborative use of EEG features extracted from
EEG signals recorded while users are listening to music pieces
and audio features extracted from audio signals of the music pieces.
Since our method implements multimodal vocal segment estimation,
accurate classification can be expected even when characteristics of
audio signals in vocal segments are similar to those in non-vocal
segments. In order to utilize EEG and audio features collaboratively,
we adopt the method proposed in [6]. This method focuses on ob-
taining the final classification results from multiple classification
results estimated by multiple information sources (annotators). It
is reported that the classification, which is based on the integra-
tion of multiple classification results by using the method in [6], is
more accurate than the classification based on the majority voting.
Furthermore, this method assigns higher weights to classification
results of the best annotators. In this way, we realize a novel method
based on the collaborative use of EEG and audio features for the
vocal segment estimation. Consequently, the proposed method can
achieve successful estimation of vocal segments in music pieces.

2. VOCAL SEGMENT ESTIMATION BASED ON
COLLABORATIVE USE OF EEG AND AUDIO FEATURES

In this section, we explain the proposed method. First, our method
extracts EEG feature vectors from EEG signals recorded while users
are listening to music pieces and audio feature vectors from these
audio signals. Secondly, we input these two feature vectors into
classifiers separately and obtain classification results. We call this
procedure the 1st step, hereafter. Finally, we estimate vocal seg-
ments by integrating the above results using the method in [6]. We
call this procedure the 2nd step, hereafter.

This section is organized as follows. In 2.1, we explain EEG
features and audio features used in our method. In 2.2, the proposed
method estimates vocal segments in terms of EEG or audio features
in the 1st step. Furthermore, we obtain the final classification re-
sults by collaborative use of the classification results based on EEG
features and audio features in the 2nd step in 2.3.

2.1. Feature Extraction

In this subsection, we explain EEG features and audio features used
in the proposed method.

EEG Feature Extraction
EEG signals are electrical signals recorded as multiple chan-
nel signals from multiple electrodes placed on the scalp. We
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Table 1. Features used for audio signals in the proposed method.
Centroid

Width
Spectral Flux

Rolloff
Envelope

Volume
Sideband Energy Ratio

Zero Crossing Rate
Pitch

MFCC

calculate EEG features from observed EEG signals and the
power spectrum computed by applying short-time Fourier
transform (STFT) to each channel’s EEG signal. The details
are shown below.
First, segmentation of each channel’s EEG signal is per-
formed at fixed intervals as the preprocessing. Next, we
compute Zero Crossing Rate from each EEG segment and
calculate content percentages of θ wave (4-7Hz), slow-α
wave (7-9Hz), mid-α wave (9-11Hz), fast-α wave (11-
13Hz), and β wave (13Hz-) of the power spectrum in every
channel. We also calculate the weighted moving average
of each percentage. Furthermore, features proposed in [3],
which focus on the power spectrum of the hemispheric asym-
metry, are adopted. By calculating these values, an EEG
feature vector is generated.

Audio Feature Extraction
First, audio signal segmentation is performed at fixed inter-
vals as the preprocessing. Then we extract audio features used
in [1, 7, 8] from each audio segment and obtain audio feature
vectors. Table 1 shows audio features used in our method.
Spectral Envelope is Linear Prediction Coefficients [9] cal-
culated from the amplitude spectrum obtained by applying
STFT to each audio segment. Generally, an EEG feature
vector is derived from a short period EEG segment (T sec-
onds, e.g., one or two seconds) and an audio feature vector
is extracted from an audio segment in milliseconds, which
is much shorter than an EEG segment. Therefore, we com-
pute the mean, variance and standard deviation from audio
features included in each EEG segment of T seconds, and a
newly-defined audio feature vector is obtained.

2.2. Vocal Segment Estimation from Each Feature (1st step)

In this subsection, we explain the method to estimate vocal segments
in the 1st step. From the previous subsection, our method can ob-
tain EEG feature vectors and audio feature vectors. Then we ap-
ply the feature selection method based on Max-Relevance and Min-
Redundancy (mRMR) criteria proposed in [10] to EEG features in
order to obtain efficient feature set for classification. It is efficient
to apply the feature selection method to EEG features since relation-
ships between stimuli to human beings from the outside and which
parts of the human brain are affected by these stimuli is not well-
known.

In the proposed method, we employ SVM [11] as the classifier to
estimate vocal segments in music pieces. We assign positive labels to
samples of vocal segments and negative labels to those of non-vocal
segments. We train the classifier by separately using EEG feature
vectors and audio feature vectors. This means the two classifiers are

respectively obtained based on EEG and audio features. Therefore,
we can estimate vocal segments in terms of EEG and audio features
by inputting feature vectors extracted from test data into each trained
classifier.

2.3. Integration of Classification Results (2nd step)

In this subsection, we explain the method to obtain the final classifi-
cation results in the 2nd step. We integrate the classification results
obtained in the 1st step using the method in [6]. This method trains
the classifier using labels estimated by multiple annotators and the
target data. The details of the 2nd step are shown as follows.

2.3.1. Preparation: Performance of each annotator and classifica-
tion model

We explain the performance of each annotator and the classification
model in our method. Let yj ∈ {0, 1} be the label assigned to the
feature vector x by jth annotator, where the two classifiers based on
EEG and audio features correspond to the annotators. Note that 1
and 0 respectively represent vocal and non-vocal segments. When
y ∈ {0, 1} is the actual label for the feature vector, the performance
of each annotator, P j

se (sensitivity) and P j
sp (specificity) are respec-

tively defined as follows:

P j
se := Pr[yj = 1|y = 1], (1)

P j
sp := Pr[yj = 0|y = 0], (2)

where j ∈ {E,A} in our method, and E and A respectively corre-
spond to EEG and Audio.

In our method, a linear discriminating function is adopted based
on the method in [6], and its classification model is specifically writ-
ten as follows:

fw(x) = wTx, (w,x ∈ Rd). (3)

The final classification results ŷ are obtained as follows:

ŷ =

{
1 wTx ≥ Th

0 otherwise,
(4)

where w is a weight and Th is a predetermined threshold.

2.3.2. Maximum likelihood estimator

Given the test data D consisting of N feature vectors with clas-
sification results by M (=2 in our method) annotators, D =
{xi, y

1
i , · · · , yM

i }Ni=1 = {xi, y
E
i , y

A
i }Ni=1, the estimation target

is the weight w. Given the test data D, the likelihood of the weight
w is defined as:

Pr[D|w] =

N∏
i=1

Pr[yE
i , y

A
i |xi,w]. (5)

Using Pse = [PE
se, P

A
se] and Psp = [PE

sp, P
A
sp], it is rewritten as

Pr[D|w] =

N∏
i=1

{
Pr[yE

i , y
A
i |yi = 1,Pse] · Pr[yi = 1|xi,w]

+ Pr[yE
i , y

A
i |yi = 0,Psp] · Pr[yi = 0|xi,w]

}
. (6)
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If we denote the actual label as yi, and it is assumed that yE
i and yA

i

are independent, Pr[yE
i , y

A
i |yi = 1,Pse] can be written as

Pr[yE
i , y

A
i |yi = 1,Pse]

= Pr[yE
i |yi = 1, PE

se] · Pr[yA
i |yi = 1, PA

se]

= [PE
se]

yE
i [1− PE

se]
1−yE

i · [PA
se]

yA
i [1− PA

se]
1−yA

i . (7)

Similarly,

Pr[yE
i , y

A
i |yi = 0,Psp]

= Pr[yE
i |yi = 0, PE

sp] · Pr[yA
i |yi = 0, PA

sp]

= [PE
sp]

1−yE
i [1− PE

sp]
yE
i · [PA

sp]
1−yA

i [1− PA
sp]

yA
i . (8)

Then the likelihood is rewritten as

Pr[D|w] =

N∏
i=1

[αipi + βi(1− pi)], (9)

where

pi = Pr[yi = 1|xi,w] = σ(wTxi)

=
1

1 + exp(−wTxi)
, (10)

αi = [PE
se]

yE
i [1− PE

se]
1−yE

i · [PA
se]

yA
i [1− PA

se]
1−yA

i , (11)

βi = [PE
sp]

1−yE
i [1− PE

sp]
yE
i · [PA

sp]
1−yA

i [1− PA
sp]

yA
i . (12)

The maximum-likelihood estimator is found by maximizing the
log-likelihood as follows:

ŵML = argmax
w
{lnPr[D|w]}. (13)

Let y = [y1, · · · , yN ] be the actual labels, and the complete data
log-likelihood can be written as

lnPr[D,y|w] =
N∑
i=1

{yilnpiαi + (1− yi)ln(1− pi)βi}. (14)

In [6], the following Expectation-Maximization (EM) algorithm is
adopted to maximize this likelihood.

(i)E-step
In the E-step, when the test data D and the current estimate
of the weight w are given, the conditional expected value of
log-likelihood is computed as follows:

E{lnPr[D,y|w]}

=

N∑
i=1

{µilnpiαi + (1− µi)ln(1− pi)βi}, (15)

where µi is computed as follows:

µi ∝ Pr[yE
i , y

A
i |yi = 1,w] · Pr[yi = 1|xi,w]

=
αipi

αipi + βi(1− pi)
. (16)

(ii)M-step
In the M-step, based on the current estimate µi and the test
data D, the weight w is estimated by maximizing the con-
ditional expected value in Eq.(15). Specifically, we obtain

Fig. 1. Electrode layout of the international 10-20 system.

the following estimated weight w by equating the gradient of
Eq.(15) to zero:

w ← w − ηH−1g. (17)

In Eq.(17), g is a gradient vector, H is a Hessian matrix and η
is a step length. The gradient vector g and the Hessian matrix
H are computed as follows:

g =
N∑
i=1

[µi − σ(wTxi)]xi, (18)

H = −
N∑
i=1

[σ(wTxi)][1− σ(wTxi)]xix
T
i . (19)

According to [6], the final classification results can be obtained
by applying a threshold γ (= 0.5) to µi instead of directly using w.

yi =

{
1 µi ≥ γ

0 otherwise.
(20)

In our method, yE
i and yA

i are the classification results obtained
by using EEG feature vectors and audio feature vectors in the 1st
step, respectively. We select features based on mRMR [10] from
all features in order to derive efficient features for classification and
obtain xi. Then, from Eq.(20), we can obtain the final classification
results.

3. EXPERIMENTAL RESULTS

In this section, we show experimental results to verify the effective-
ness of the proposed method. We explain EEG signal collection and
the experimental procedures in 3.1. Furthermore, the results of vocal
segment estimation in music pieces are shown in 3.2.

3.1. EEG Signal Collection and Experimental Procedures

In this subsection, we explain how to collect EEG signals in this ex-
periment. EEG signals in this study are collected from six healthy
subjects while they are listening to music pieces. The average age
of subjects is about 23 years old. We record EEG signals from 12
channels (Fp1, Fp2, F7, F8, C3, C4, P3, P4, O1, O2, T3, T4) ac-
cording to the international 10-20 system shown in Fig.1. Since
EEG signals are weak, we amplify these signals by using an am-
plifier (MEG-6116M, NIHON KOHDEN). All leads are referenced
to linked earlobes, and a ground electrode is located in the forehead.
We also apply a band-pass filter to recorded EEG signals to avoid
artifacts, and set the filter bandwidth to 0.04-30Hz.
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Table 3. Results of our method and conventional methods. Note that results of only audio features are not depend on each subject. Thus, the
result values become the same. F-measure is a harmonic mean between Recall and Precision.

Only EEG features Only Audio features Proposed method 　

Avg.Recall Avg.Precision Avg.F-measure Avg.Recall Avg.Precision Avg.F-measure Avg.Recall Avg.Precision Avg.F-measure
Subject A 0.9460 0.6191 0.7436 0.8911 0.8838 0.8869 0.8878 0.9116 0.8988
Subject B 0.9914 0.5522 0.7081 0.8911 0.8838 0.8869 0.8955 0.8856 0.8897
Subject C 0.9279 0.6415 0.7556 0.8911 0.8838 0.8869 0.8921 0.9141 0.9024
Subject D 0.9371 0.6321 0.7502 0.8911 0.8838 0.8869 0.8911 0.9131 0.9019
Subject E 0.9708 0.5677 0.7124 0.8911 0.8838 0.8869 0.8933 0.9007 0.8964
Subject F 0.9183 0.6145 0.7374 0.8911 0.8838 0.8869 0.8888 0.9077 0.8974

Avg. 0.9486 0.6045 0.7346 0.8911 0.8838 0.8869 0.8914 0.9055 0.8978

Table 2. Experimental conditions.
Audio signals EEG signals

Sampling rate 44.1kHz 500Hz

Quantifying bit number 16bit 12bit

Time length of a segment 30ms 1s

Time length of an overlapping 20ms 0s

All music pieces which subjects are listening to are the two
kinds of excerpts that include vocals or non-vocals, and the genre is
Japanese POP music. One minute silence is inserted between every
two music pieces. Subjects are instructed to keep their eyes closed,
relax and remain seated when listening to music pieces. Further-
more, other experimental conditions are shown in Table 2.

3.2. Classification Results of Vocal Segments

In this subsection, we show experimental results to verify the ef-
fectiveness of our method. We use 60 pieces of music as a dataset
including 30 positive pieces and 30 negative pieces, and the aver-
age of each time length is about 24 seconds. We also employ 5-fold
cross-validation and each five subdataset contains the same number
of music pieces labeled as positive and negative.

In this experiment, we perform the comparison with recent rep-
resentative classifiers, i.e., SVM, based only on EEG or audio fea-
tures. It is reasonable to adopt these comparisons since our main
contribution is the multimodal approach. Note that we employ the
Gaussian kernel for SVM in all methods. To evaluate the accuracy
of our vocal segment estimation, we use Recall, Precision and F-
measure as defined below:

Recall =
Nc

Nm
, (21)

Precision =
Nc

Na
, (22)

F-measure =
2× Recall× Precision

Recall + Precision
, (23)

where Nc is the number of segments estimated correctly as vocal
segments, Nm is the number of true segments estimated manually
as vocal segments and Na is the number of segments estimated by
the method automatically as vocal segments.

The results are shown in Table 3. As shown in this table, the pro-
posed method realize more accurate vocal segment estimation than
the method based only on EEG or audio features. From these results,
we can confirm that the multimodal approach is effective in the pro-
posed method. We also note that our method can modify the classi-
fication results estimated incorrectly by utilizing only audio features
based on the collaborative use of EEG and audio features. This ef-
fectiveness is also shown in Fig.2. In this figure, the whole part is

Fig. 2. A part of experimental results: the top is the waveform of
audio signals, the two middle are waveforms of EEG signals (the
upper is O1 and the lower is O2) and the bottom is the classification
results. Class 1 and 0 correspond to vocal segment and non-vocal
segment, respectively. Whole ground truth is 0, i.e., there is no vocal
segment in this example.

non-vocal segment, but the classification results using only audio
features suffer from some errors. On the other hand, our method
can reduce such errors. Therefore, from the results in this subsec-
tion, the effectiveness of our main contribution, i.e., the multimodal
approach, is verified. This provides a solution to the performance
limitation of the recent conventional methods.

4. CONCLUSIONS

In this paper, we have proposed a novel vocal segment estimation
method based on collaborative use of EEG and audio features. In
the proposed method, we utilize EEG features extracted from EEG
signals recorded while users are listening to music pieces and audio
features extracted from audio signals of the music pieces. Therefore,
our method implements multimodal vocal segment estimation. The
experimental results show that our multimodal approach can realize
more accurate vocal segment estimation than the unimodal approach.
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