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ABSTRACT

Meditation is a fascinating topic, yet has received limited
attention in the neuroscience and signal processing com-
munity so far. A few studies have investigated electroen-
cephalograms (EEG) recorded during meditation. Strong
EEG activity has been observed in the left temporal lobe
of meditators. Meditators exhibit more paroxysmal gamma
waves (PGWs) in active regions of the brain. In this paper,
a method is proposed to automatically detect PGWs from
meditation EEG. The proposed algorithm is able to iden-
tify multiple sources in the brain that generate PGWs, and
the sources associated with different types of PGWs can be
distinguished. The effectiveness of the proposed method is
assessed on 3 subjects possessing different degrees of exper-
tise in practicing a yoga type meditation known as Bhramari
Pranayama.

Index Terms— Paroxysmal gamma wave; Electroen-
cephalogram; Meditation; Bhramari Pranayama; Spike detec-
tion

1. INTRODUCTION

Meditation refers to a family of self regulation practices fo-
cusing on training attention and awareness, so as to bring
mental processes under greater voluntary control. However,
despite almost 50 years of study, the psychophysiological
properties and personality traits of meditation have not been
adequately studied [1, 2]. There are various types of medita-
tion techniques, such as transcendental meditation, Buddhist
meditation, and yoga type meditation. In this paper, we con-
sider EEG recorded during Bhramari Pranayama (BhPr),
which is a yoga type meditation where periods of long ex-
halation and short inhalation are alternated. BhPr may help
to ease up the hormonal imbalance manifestation, such as
hypertension, anxiety, and abnormal blood pressure [3].

Neuroscientists have investigated brain activity during
meditation. Significantly enhanced activation has been ob-
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served in the temporal lobe during meditation in several fMRI
studies [4, 5]. EEG studies on meditation have revealed en-
hanced alpha band activity during meditation [6, 7, 8]. An
increase of activity in the gamma band of the EEG during
meditation has also been reported [2, 9, 10]; in particular,
subjects exhibit more paroxysmal gamma waves (PGWs).
The knowledge of the PGW distribution together with brain
functional mapping may help us to have a better understand-
ing of the brain activity during meditation. However, compre-
hensive PGW marking is time consuming, which motivates
us to develop automated PGW detection algorithms.

In this paper, we propose a fully automated procedure
for extracting and clustering PGWs in EEG recordings of
meditators, by combining several signal processing tech-
niques including principal component analysis (PCA), blind
signal separation (BSS), and K-means clustering. The pro-
posed procedure is able to identify multiple sources that
generate PGWs, and associate sources with different types
of PGWs. In contrast, only a single source was identified in
prior work [2], by manually screening the PGWs. The pro-
posed method could potentially be extended to extract PGWs
in other kinds of EEG recordings, e.g., EEG of other types of
meditation, or even epileptic EEG, as PGW has a shape very
similar to that of an inter-ictal spike.

This paper is organized as follows: in Section 2, we ex-
plain our proposed PGW detection method; in Section 3, we
present and discuss the results, and in Section 4, we draw con-
clusions about our findings.

2. METHODS

2.1. Bhramari Pranayama EEG Recording

We consider 3 different subjects practicing BhPr meditation:
There is a beginner “B” without training, an intermediate sub-
ject “I” trained for a month, and an expert “E” trained for 4
months. EEG was recorded in one or two consecutive BhPr
sessions in which each subject performed approximately 20
breathing episodes. Each episode in turn consists of a short
inhalation period and a long exhalation period, during which
the subject produces a typical humming sound. An ambient
sound signal was recorded along with the EEG to reliably in-
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Fig. 1. Diagram of the proposed procedure.

dicate the periods of exhalation or inhalation. EEG was also
recorded before and after BhPr in the resting condition. The
EEG recordings were conducted in an electrically shielded
room using a Biosemi system with 128 active electrodes. The
signals were sampled at 2048 Hz and an analog filter between
1 and 300 Hz was applied. Moreover, notch filters were ap-
plied at 50 Hz and every harmonic of 25 Hz to remove the
power line interferences.

2.2. Signal Processing

A diagram of the proposed procedure is depicted in Fig. 1.
Principal component analysis (PCA) [11] is the first step in
the processing flow, so as to compress the 128-channel EEG
recording into data with a smaller number of channels. Next,
blind signal separation (BSS) [12] is applied to identify the
sources from the compressed EEG. We estimate the PGW rate
for each source, and select the sources that generate most of
the PGWs; we backproject the latter in sensor domain, to re-
construct the 128-channel EEG recording. In the following,
we describe the different steps of the proposed signal process-
ing procedure.

2.2.1. Principal Component Analysis

Principal component analysis (PCA) [11] is a common tech-
nique for finding patterns in high-dimensional data. We apply
PCA to reduce the number of EEG channels. Let Z ∈ RN×M

denote the N -channel EEG recordings, where M is the num-
ber of samples in each time series. The importance of each
eigenvector of the covariance matrix R of Z can be quanti-
tatively measured by its associated eigenvalue: the larger the
eigenvalue, the more relevant the corresponding eigenvector
will be in explaining the data. Denoting the eigenvalues of R
by λ1, λ2, · · · , λN in descending order and the corresponding
eigenvectors by u1, u2, · · · , uN , Z can be compressed by re-
taining the top L (with L << N ) dimensions, most relevant
to interpret the data. The compressed data Y ∈ RL×M can be
obtained as:

Y =
[
u1 u2 · · · uL

]T
Z. (1)

The parameter L is chosen such that∑L
i=1 λi∑N
i=1 λi

≥ γ, (2)

with γ ∈ (0, 1] (we choose γ = 0.95).

2.2.2. Blind Signal Separation

Blind signal separation (BSS) [12] is a well-known technique
to reconstruct unobserved sources from multi-sensor record-
ings. The adjective “blind” stresses the fact that the sources
are not observed, and no information is available about the
mixture [12]. In our setting, we assume that the compressed
data Y (1), resulting from PCA, is a linear combination of
independent sources X ∈ RL×M located in the brain:

Y = AX +N, (3)

where A ∈ RL×L is the mixing matrix and N ∈ RL×M is
i.i.d. Gaussian noise. We aim at reconstructing X from Y :

X = WY, (4)

where W ∈ RL×L is unknown. We apply the BSS method
“Second Order Blind Identification” (SOBI) [13] to infer the
weight matrix W :

Ŵ = ÛH [(λ1 − σ̂2)−0.5u1, · · · , (λL − σ̂2)−0.5uL]
H , (5)

where σ̂2 represents the estimated noise variance, computed
using resting EEG. The unitary matrix Û is obtained as joint
diagonalizer of the sample estimates.

2.2.3. Paroxysmal Gamma Wave Detection

The paroxysmal gamma waves (PGWs) in meditation EEG
are characterized by distinct high-frequency biphasic pat-
terns, with a shape close to a neural spike [2] (see Fig. 2).
The large amplitude voltage transients occur at sustained fast
rhythms of 10–30 Hz. Manually extracting PGWs is time
consuming, which motivated us to develop automated pro-
cedures to extract PGWs. In this paper, we extract PGWs
from various signals: from the sources obtained through
BSS (cf. Section 2.2.2), from the backprojected signals in
sensor domain (see Fig. 4b–e), and from the raw EEG (see
Fig. 4a).

Our PGW detection method exploits morphological as-
pects of PGWs, as illustrated in Fig. 2. For simplicity, the
onset of a spike is defined as the previous local minima w.r.t.
the main peak, while the end point is the next local minima
w.r.t. the minor lobe. All the timing values are counted from
the onset. Peak values (i.e., Vpi, i=1,2) are obtained w.r.t. the 0
baseline, while peak-to-peak values (i.e., Vppi, i=1,2) are ob-
tained w.r.t. the trough. Regarding PGW detection, the fol-
lowing conditions are evaluated by our proposed method: the
peak value Vp1 of the main lobe (first peak) is supposed to
be larger than a several standard deviation of the signal, i.e.,
Vp1 > ασx, where σx is the standard deviation of the entire
signal and α is a scalar; the minor peak (second peak) Vpp2

is supposed to be significantly smaller than the main peak
Vpp1, i.e. ρ1Vpp1 ≤ Vpp2 ≤ ρ2Vpp1 with ρ1 < ρ2 < 1; the
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trough should be below the onset point, i.e. Von > Vtr; and
finally, the duration T of the PGW should be smaller than a
constant τ .

The proposed method is “adaptive”, catering to each in-
dividual channel (or source), as the parameters are learnt
from K PGW samples manually extracted from each indi-
vidual channel (or source). In our analysis, we set K = 60
for each channel (or source). The ratio of number of train-
ing samples to testing samples is maintained at ∼ 1 : 5.
For each individual PGW k (with k = 1, 2, · · · ,K) at each
channel (or source) i, we compute the parameters such as
α(i, k), ρ1(i, k), ρ2(i, k) and τ(i, k) (see Fig. 2). We de-
termine the extreme values, i.e. αi = mink α(i, k), ρ1,i =
mink ρ1(i, k), ρ2,i = maxk ρ2(i, k) and τi = maxk τ(i, k),
as the final representatives for channel (or source) i. With this
choice of parameters, the automated morphological detector
considers all manually selected PGWs as positives, as they
meet the selection conditions. Next, with this set of param-
eters for each individual channel (or source), we apply the
detector to all channels (or sources), in order to extract the
PGWs. The proposed method is computationally efficient,
which is important for real-time EEG processing and offline
processing of large EEG data sets.
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Fig. 2. Morphological parameters of a PGW.

2.2.4. Clustering

Once all PGWs have been extracted at each source, we ap-
ply an unsupervised classifier, specifically K-means cluster-
ing [14], allowing us to distinguish different PGW shapes.
Three features are used for clustering: timing of the main
peak Tp1, timing of the main trough Ttr, and the slope of
the rising flank of the main peak.

2.2.5. PGW Sources and Back Projection

After obtaining the PGWs for all sources, we identify the
sources that contain the most PGWs. Concretely, we dis-
card sources with a total number of PGWs below a certain
percentile Qλ. Also sources with PGW rate below a certain
threshold rate υ are removed. In our numerical analysis, we
set Qλ=80% and υ=10 Hz (as in [2]). We then back project
the remaining sources, with high PGW rate and largest num-
ber of PGWs, on the scalp [15], similarly as in (3). We use
the MATLAB toolbox EEGLAB [16] to visualize the recon-

structed signals onto a 2-D top-view head model.

3. RESULTS AND DISCUSSION

3.1. Sensitivity and Specificity Analysis

We conducted a sensitivity and specificity analysis of the pro-
posed automated PGW detector. Several experts manually ex-
tracted PGWs from a 18s long exhalation period of EEG from
subject B; we applied the PGW detector on the same EEG
segment, in addition to the single-threshold method [17] and
the “double threshold with filtering” method [18]. In Fig. 3,
the results are summarized. On the left hand side, a 0.4s snap-
shot of the EEG segment is shown, with the outcomes of the
three detectors and the manually labeled PGWs; on the right
hand side, the receiver operating characteristic (ROC) curves
for all 3 methods are shown. The proposed method outper-
forms the other 2 methods, probably because of the fact that
our proposed method incorporates more detailed knowledge
about the shape of PGWs.
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Fig. 3. Comparison of PGW detection results (left), and ROC
curves (right).

As can be seen also from Table 1 (with threshold = 1.0), the
proposed method has the lowest false positive (FP) rate, and
the highest sensitivity and specificity; although it involves
more PGW features, it has a comparably small processing
time (for a single PGW).

Table 1. Comparison of PGW detection methods

FP Rate Sensitivity Specificity Features Processing Time

Single-threshold 67.6% 100% 49.6% 1 12.0 ms
Filtered 2-threshold 29.8% 98.8% 80.0% 3 41.9 ms
Proposed method 2.0% 100% 99.1% 4 34.6 ms

3.2. Single Source

A prior study [2] of the same EEG data only considered a sin-
gle source, manually extracted all the PGWs. A single source
was extracted for each episode, without distinguishing the
short inhalation and long exhalation period; in other words,
the same source was assumed to generate PGWs in both pe-
riods, which is a restrictive assumption. In order to compare

1194



the proposed method with the results of [2], we first extracted
a single source as well (see Table 2 for input settings (bold)).
The results are displayed in Fig. 4b; there is a good match
between our results to those in [2], as similar regions of the
brain seem to be activated during BhPr. For all the subjects,
the left temporal lobe was active with high PGW rate, which
is in agreement with the hypothesis in [4, 5] suggesting that
meditation is associated with an activation of the left tempo-
ral lobe. Activity in temporal lobes is often associated with
emotional responses and memory. Therefore, our results may
provide some insights into the effects of meditation. As com-
parison, the distribution of PGWs extracted directly from the
raw EEG is shown in Fig. 4a.

Fig. 4. PGW rate distribution [Hz] for (a) raw signal and
backprojection from (b) a single source, (c) multiple sources
assumption, (d) PGWs from cluster 1 only, and (e) PGWs
from cluster 2 only.

Table 2. Parameters of PGW detector in source selection.
S1B S2B S1I S2I S3I S4I S1E S2E S3E S4E S5E S6E S7E S8E S9E

α 1.02 1.39 1.20 1.25 1.27 1.13 1.20 1.25 1.14 1.10 1.21 1.34 1.16 1.21 1.25
ρ1 [10−2] 6.1 5.4 10.2 6.1 8.9 6.6 5.6 5.9 6.7 5.4 8.7 6.1 6.9 5.6 5.2
ρ2 [10−2] 84.8 84.9 84.8 84.8 84.9 84.8 84.9 84.8 84.9 84.9 85 84.5 84.8 84.9 84.8
τ [ms] 48 46 43 51 48 45 50 47 46 46 46 47 46 44 45

3.3. Multiple Sources

Now we consider multiple sources, as described in Sec-
tion 2.2.5. Results are summarized in Fig. 4c for each subject
during one of the exhalation periods (see Table 2 for parame-
ter settings). For subject B, 2 sources were selected out of 10
principal components; for I , 4 sources were selected out of
47 principal components, and for E, 9 sources were selected
out of 23 principal components. Interestingly, the additional
sources activate mostly the left temporal lobe, similarly as
in the single-source analysis. As illustrated in Fig. 5, the
PGW distribution during exhalation periods is quite stable,
but visibly less stable during inhalation periods.

3.4. Multiple Sources with Clustering

We applied K-means clustering to the PGWs from multiple
sources, as described in Section 2.2.4. For the sake of sim-
plicity, we chose 2 clusters, although the analysis could be
straightforwardly repeated with multiple clusters. In Fig. 6,
we show PGWs belonging to different clusters, corresponding
to different types of PGWs. Comparing to cluster 1, PGWs
from cluster 2 have late, smooth and less steep main peaks.

Fig. 5. PGW rate distribution [Hz] with multiple-source as-
sumption for backprojection from (a) 3 successive exhalation
periods, and (b) 3 successive inhalation periods.

Results for both PGW clusters are shown in Fig. 4d &
e. The brain regions associated to the 2 clusters are mostly
non-overlapping, suggesting that different regions of the brain
might generate different types of PGWs during meditation.
Cluster 1 has a dominant PGW rate at ∼ 10–20 Hz, while it
is < 5 Hz for cluster 2, which may explain why the PGW dis-
tribution associated with cluster 1 (cf. Fig. 4d) is very similar
to the PGW distribution associated to multiple sources with-
out clustering (cf. Fig. 4c).
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4. CONCLUSIONS

We have proposed a fully automated procedure to extract
PGWs in EEG of Bhramari Pranayama (BhPr) practition-
ers. Compared to two other PGW detectors, the proposed
method has the lowest false positive rate, highest sensitivity
and specificity, and a reasonable processing time. We in-
vestigated the effectiveness of the proposed method on the
EEG of 3 subjects possessing different degrees of expertise
in practicing BhPr. We backprojected EEG from both single
and multiple sources of PGWs. The resulting PGW scalp
distribution agree well with finding in prior studies [2, 9, 10].
In addition, the proposed method is able to identify multi-
ple PGWs sources in an automated fashion, whereas in prior
work [2], a single PGW source was extracted manually, which
is a time-consuming process. We also conducted analysis of
exhalation periods and inhalation periods separately. For
each subject, the PGW distribution during exhalation periods
is stable, while it is far less consistent during inhalation peri-
ods. We identified 2 different types of PGWs, associated with
different brain regions. In future work, we will investigate the
synchrony of PGWs across different brain regions, and will
extend the study to a larger number of subjects.
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