
MAXIMUM DEPENDENCY AND MINIMUM REDUNDANCY-BASED CHANNEL

SELECTION FOR MOTOR IMAGERY OF WALKING EEG SIGNAL DETECTION

Huijuan Yang, Cuntai Guan, Chuan Chu Wang and Kai Keng Ang

Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore

Email: {hjyang, ctguan, ccwang, kkang}@i2r.a-star.edu.sg

ABSTRACT

This paper proposes a novel method to detect motor imagery

of walking for the rehabilitation of stroke patients using the

laplacian derivatives (LAD) of power averaged across fre-

quency bands as the feature. We propose to select the most

correlated channels by jointly considering the mutual infor-

mation between the LAD power features of the channels and

the class labels, and the redundancy between the LAD power

features of the channel with that of the selected channels. Ex-

periments are conducted on the EEG data collected for 11

healthy subjects using proposed method and compared with

existing methods. The results show that the proposed method

yielded an average classification accuracy of 67.19% by se-

lecting as few as 4 LAD channels. An improved result of

71.45% and 73.23% are achieved by selecting 10 and 22 LAD

channels, respectively. Comparison results revealed signif-

icantly superior performance of our proposed method com-

pared to that obtained using common spatial pattern and fil-

ter bank with power features. Most importantly, our pro-

posed method achieves significant better accuracy for poor

BCI performers compared to existing methods. Thus, the re-

sults demonstrated the potential of using the proposed method

for detecting motor imagery of walking for the rehabilitation

of stroke patients.

Index Terms— rehabilitation, motor imagery of walking,

EEG signal, mutual information, minimum redundancy.

1. INTRODUCTION

Stroke is one of the leading causes of mortality and disability

in industralized countries [1]. One third of surviving patients

lost the idenpendent walking ability and walking in an asym-

metric manner. Gait recovery is one of the major objectives in

the rehabilitation of stroke patients. Therapies and techniques

used for gait rehabilitation include: classical techniques such

as neurophysiological and motor learning approaches, func-

tional electrical stimulation (FES), assistive robotic devices,

and non-invasive brain-computer interfaces (BCI) [2, 3]. The

primary objective of using BCI is to help the paralyzed pa-

tients to communicate with others and to improve their qual-

ity of life by volitional control of the brain activity. Similar

to the robotic-based rehabilitation [1], BCI-based training al-

lows more intensive repetitive motion and delivers the therapy

with reasonable cost. It also allows the quantitative assess-

ment of the level of recovery, which, hence, makes it possi-

ble to perform the training at home [3]. Motor imagery can

even be used for the patients with no residual motor func-

tion [1]. The use of BCI for rehabilitation is strengthened by

the followings. Firstly, it is anticipated that the rhythmic foot

or leg movements activates the primary motor cortex, while

the movement preparation activates the frontal and associated

areas [1, 3]. The activation works in the comparable or sim-

ilar way as that of the motor execution. Further, the activity-

dependent plasticity throughout center nervous system will

influence the functional outcome of the patients. Such men-

tal imagery or rehearsal also causes the reorganization of the

functional networks in both healthy and stroke people [3].

Classification techniques are usually used to detect the

event-related synchronization (ERS) and event-related desyn-

chronization (ERD) EEG signals generated by the prepara-

tion, mentally imaging and execution of the limbs. Most ex-

isting works focus on the detection of upper limb movement

or imagination. Existing work on detection of lower limb

movment and imagination includes: detection of dorsiflexion

of both feet (movement) [4], comparsion of the effects for mo-

tor imagery of foot dorsiflexion and gait using motor evoked

potentials and apply transcranial magnetic stimulation (tDCS)

over the primary motor cortex [5], using the post-movement

beta rebound after brisk feet movement to set up a classifier

to classify the motor imagery of feet [6].

Recently, a large linical trial on 54 stroke patients have

shown that the majority of stroke patients could use EEG-

based BCI [7]. However, whether or not EEG-based BCI is

helpful in gait rehabilitation still requires further investiga-

tion. In this paper, we address the issue based on the EEG data

collected for 11 healthy subjects on motor imagery of walking

and idle. We hope to investigate the followings: 1) Is it possi-

ble to detect the motor imagery of brisk walking with relative

to a relaxation state? 2) what are the most correlated channels

to the motor imagery of brisk walking? Can we detect the

motor imagery of walking with the use of a few most corre-

lated laplacian derivatives (LAD) channels? To achieve these

objectives, we propose a method to select the most correlated
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channels by jointly considering the mutual informaiton be-

tween LAD power features of the channels and class labels,

and the redundancy between LAD power features of the chan-

nel with that of the selected channels.

2. OUR PROPOSED METHOD

2.1. Laplacian Derivatives of Power Feature Extraction

Four electrodes horizontally or vertically neighboring to the

selected electrode are employed to generate the Laplacian

derivatives (LAD) power features. For those electrodes sit-

uated at the boundary, two electrodes horizontally or ver-

tically neighboring to the selected electrode are used. The

band power of laplacian derivatives of the chosen elec-

trodes are used as the features. Let’s firstly denote the sig-

nal as: Se(m,n, k), where m=1,2,...,Ns, n=1,2,...,Nc and

k=1,2,...,Nr represent indexes of the samples, channels and

trials, respectively. The signal is firstly divided into Nf fre-

quency bands, starting from 4Hz to 44Hz, with the bandwidth

of each frequency being 4Hz, and the overlapping between

two frequency bands is taken as 2Hz. The signal is then

band-pass filtered by Chebyshev filter, the resultant filtered

signal is denoted as Sf . The band power for the kth trial, nth

channel at frequency band fs is calculated by

Pw(k, n, fs) = 10 ∗ log10(

Ns∑
m=1

Sf (k, n,m) ∗ Sf (k, n,m))

(1)

Let’s now assume the location indexes of the current

processing electrode and its four neighboring electrodes as:

nl(i, j), and nl(i-1, j), nl(i+1, j), nl(i,j-1) and nl(i,j+1),
respectively; where i and j represent the locations in the x

and y directions. In this case, the laplacian derivates of the

power of the current channel (denoted by the location idex of

nl(i, j)) are given by

P d
w(k, nl(i, j), fs) = Pw(k, nl(i, j), fs)− Pn

w(k, n̂l, fs) (2)

Pn
w(k, n̂l, fs) =

1

4

∑
b={i−1,i+1};
v={j−1,j+1}

Pw(k, nl(b, v), fs) (3)

P̄ d
w(k, nl(i, j)) =

1

Nf

Nf∑
fs=1

P d
w(k, nl(i, j), fs) (4)

The final LAD power features (P̄ d
w(k, nl(i, j))) are the aver-

aged power features across frequency bands.

2.2. Maximum dependency with minimum Redundancy

(MD-MR)-based LAD Channel Selection

It is noticed that the most informative channels for generat-

ing the event-related de-synchronization (ERD) and event-

related synchronization (ERS) are different from subject to

subject. Further, these informative channels vary when the

subject performs different mental tasks. To find out what are

the most correlated channels for the motor imagery of walk-

ing action, we propose to choose the subject-specific LAD

channels (electrodes) based on maximum dependency with

minimum redundancy (MD-MR) as inspired by the feature

selection method proposed in [8]. The maximum dependency

is evaluated by the mutual information between the laplacian

derivatives of the power features of the channels (w, here w

is the feature (P̄ d
w) obtained in Eq. (4)) and that of the class

labels (c), i.e., the mutual information I(w, c) should be the

maximum in order to have the maximum dependency, which

is given by

I(w; c) =

∫∫
p(w, c)log

p(w, c)

p(w)p(c)
dw dc (5)

where wi and ci represent the LAD power features for the

LAD channel and that of the class labels; p(w, c) repre-

sents the multivariate density. For the maximum dependency

(MD)-based channel selection, the top Nd LAD channels that

maximize I(w; c) are selected, which is given by

n̂ = argmax
n

Nr∑
k=1

I(w(k, n), c(k)) (6)

where k and n are the indexes of the trials and LAD channels.

In general, the LAD channels can be selected in an incremen-

tal way, e.g., each time the one that maximizes the mutual

information will be selected and added to the selected chan-

nel set.

However, the information contained in the selected chan-

nels may be redundant by only satisfying the maximum de-

pendency condition. Hence, we hereby propose to impose

the minimum redundancy constraints on the LAD power fea-

tures of current considering channel with those already se-

lected ones, i.e., the mutual information between the LAD

power features of considering channel with those already se-

lected ones should be minimum. This is achieved by jointly

optimizing the condition

min
w(j)∈

{W−Wm−1}

[λ
1

m− 1

∑
w(i)∈
Wm−1

I(w(j);w(i))− I(w(j); c)] (7)

where w(i) is the brevity of w(k, i). Each time, the LAD

power features of selected channel should be of the minimum

dependency with those already selected ones, e.g., those in

Wm−1; λ is the weighting factor to balance the mutual infor-

mation between the LAD power features of pairs of channels

and that between the LAD power features of channels with

class labels, λ=0.5 is selected in the experiments. The de-

tail steps for the channel selection based on maximum depen-

dency and minimum redundancy (MD-MR) are as follows.

Step 1. Compute the mutual information between the

LAD power features of the channels with that of the class

labels using Eq. (5).
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Step 2. Choose a predefined number of features (Np) that

are of the maximum mutual information with the class labels

using Eq. (6). This step is necessary if the original set is too

large. Np=α*Nf , where Nf is the final number of LAD chan-

nels to be selected, e.g., α=1.5 can be chosen.

Step 3. Compute the dependency between the LAD power

features of each unselected channel with that of those already

selected using Eq. (6).

Step 4. Choose the channels by jointly considering the de-

pendency between the features of the channels with the class

labels and the redundancy between LAD power features of

unselected channels with those already selected channels us-

ing Eq. (7).

Repeat steps 3-4 till the required number of channels are

selected.

3. EXPERIMENTAL RESULTS

To investigate the effectiveness of our proposed method in

detecting the motor imagery of walking, EEG data were col-

lected from 11 healthy subjects. The subjects are instructed

to perform motor imagey of walking, i.e., to imagine walk-

ing using the two legs with the focus of the rhythmic move-

ments of the legs, joints and the feelings when the feet touch

and push the ground. Subjects gave written consent before

participating the experiment, and none of the subjects has the

history of neurological or orthopedic disorders. One trial con-

sists of 16 seconds, with the preparation lasting for 2 seconds

and shown as the changing of the traffic lights. The cue is

then shown to the subjects as a human character walking or

in stance position for 2 seconds. The subject is then asked

to perform motor imagery of walking in his/her comfortable

pace, or not to do anything by just looking at the screen. This

is followed by a resting period of 6 seconds between any two

trials. Two sessions of data are collected in two different days.

Each session consists of two runs with each run consists of 40

trials of motor imagery of walking and 40 trials of idle. The

subjects are of ages between 23-45, and among them, four are

female and seven are male.

A total of 22 channels of laplacian derivatives (LAD

channels) are symmetrically selected, which are: ‘F3’, ‘F4’,

‘FC3’, ‘FC4’, ‘Fz’, ‘FCz’, ‘C3’, ‘C4’, ‘Cz’, ‘CPz’, ‘CP3’,

‘CP4’, ‘TP7’, ‘TP8’, ‘FT7’, ‘FT8’, ‘T7’, ‘T8’, ‘P3’, ‘P4’, ‘Pz’

and ‘Oz’. Among the 22 channels, 10 channels are further

selected based on the proposed maximum dependancy with

minimum redundancy (MD-MR)-based method. The opti-

mal time segments for each subject are obtained using cross

validation since the time points for actual peak responses are

different from person to person. We compare the classifi-

cation results of our proposed method of using 22 selected

LAD channels with several existing methods, which include:

filter bank common spatial pattern (FBCSP)-based EEG sig-

nal classification method [11], filter bank with power features

(FBPF), common spatial pattern (CSP) method [12, 13] and

sliding window discriminant CSP (SWD-CSP) method [14],

with the 10×10 cross-validation results shown in Table 1.

A paired t-test of the hypothesis that the difference of the

two matched samples assumed to come from a normal dis-

tribution with mean zero has been rejected at significance of

95% for filter bank with power features (FBPF) and CSP, but

not rejected for FBCSP and SWD-CSP. This indicates that

our proposed method performs significantly better than filter

bank with power features (FBPF) and CSP methods. Further,

the averaged classification accuracy across subjects of our

proposed method is 1.78% and 3.59% higher than that of

FBCSP and SWD-CSP, respectively. Most importantly, our

method has shown superior performance for those subjects of

poor performance, e.g., subjects whose accuracies are below

70%, compared with other methods.

To further investigate how the performance is affected

by selecting different numbers of channels based on our

proposed maximum dependency with minimum redundancy

(MD-MR)-based channel selection method, we further reduce

the number of LAD channels used, e.g., using 4, 10 and 16

selected LAD channels, with the results shown in Fig. 1.

cc cc lj lj awaw xy xy ks ks hj hj at at th th cr cr zmzm mt mt

20

40

60

80

100

120

Subjects

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

 

 
Select 4 channels

Select 10 channels

Select 16 channels

Use 22 channels

Fig. 1. Performance comparisons of selecting different numbers of
LAD channels.

It can be observed from the figure that reducing the num-

ber of LAD channels only slightly degrades the performance

compared with that achieved using all the 22 selected LAD

channels. The average classification accuracies and variances

obtained across subjects by selecting 4, 10, 16 LAD chan-

nels are: 67.19%±2.87, 71.45%±2.50, and 71.64%±2.67,

which are slightly worse than that obtained using a total of

22 LAD channels, i.e., 73.23%±2.87. Hence, selecting the

most informative channels will not degrade the performance

much. However, the use of fewer channels will significantly

reduce the setup time in the rehabilitation and hence, will

make the system more practical to be used in clinical trials.

The 95% confidence estimation of the accuracy for the re-
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Table 1. Performance Comparisons of Proposed and Other Methods

Proposed Filter Bank CSP SWD-CSP FBCSP
(22 LAD chan.) with Power Fea.

Subj. Sess. Ac±Vr Ac±Vr Ac±Vr Ac±Vr Ac±Vr

cc 01 62.50±3.57 47.31±3.49 61.19±3.28 70.30±2.08 73.06±2.29
02 76.59±2.28 48.75±5.85e-15 66.56±3.38 69.33±1.41 63.25±1.69

lj 01 79.70±3.18 68.56±2.32 75.56±2.73 77.61±1.59 85.19±2.19
02 86.32±2.97 71.75±0.87 76.00±1.86 80.46±2.35 83.88±1.84

aw 01 58.79±2.50 56.13±2.46 59.13±2.28 53.32±5.82 53.50±3.46
02 62.41±3.37 53.75±1.93 57.06±2.14 50.52±4.13 50.69±2.44

xy 01 70.77±2.83 50.69±3.29 55.88±2.60 62.53±1.41 58.38±1.29
02 77.53±2.45 57.56±3.21 61.44±2.93 75.44±3.08 78.25±1.41

ks 01 71.08±3.13 62.00±1.95 51.94±3.25 70.53±2.92 77.19±2.52
02 82.55±2.37 54.94±1.99 81.19±2.12 82.50±1.10 85.81±0.93

hj 01 78.17±3.37 77.50±0.78 85.25±1.72 87.41±1.49 87.38±1.90
02 78.12±3.23 76.06±0.98 80.63±1.88 80.18±3.18 85.31±2.23

at 01 63.28±3.62 57.50±2.17 56.00±3.49 55.85±4.29 56.00±2.90
02 68.64±3.22 53.85±3.22 60.80±1.97 57.29±1.16 69.44±2.56

cr 01 95.17±1.51 82.60±2.20 96.81±1.36 92.95±1.46 95.00±0.83
02 91.17±1.98 89.81±0.59 95.25±0.91 91.29±1.35 90.56±1.04

zm 01 94.57±1.19 91.31±0.46 92.44±1.28 89.50±2.45 92.44±0.75
02 67.05±4.02 64.69±1.11 64.69±2.97 66.34±2.87 65.13±1.76

mt 01 68.84±3.02 58.36±0.87 63.33±1.84 65.89±2.40 65.25±1.38
02 62.95±4.16 49.34±1.71 52.06±2.30 48.74±4.57 48.94±4.65

th 01 61.53±2.94 53.63±1.69 47.88±2.98 50.67±1.08 56.00±1.87
02 53.24±2.21 49.37±0.85 45.75±3.14 53.41±2.88 55.44±2.87

Aac * 73.23±2.87 62.52±1.73 67.58±2.38 69.64±2.50 71.45±2.04

Ac: Accuracy (%), Vr: Variance. Aac: Average Accuracy across subjects and sessions. Best performance is shown in bold.

spective action at chance level are: 41.88% and 57.50% us-

ing the inverse bionomial cumulative distribution. This in-

dicates that subjects whose accuracy lie between 41.88% to

57.50% are deemed as performing at chance level. The re-

sults show that only subject ‘th’ at session 2 performed at

chance level by using 22 LAD channels. Further analysis on

the most correlated channels to the motor imagery of walk-

ing versus idle action shows that the most frequently acti-

vated locations across the subjects (e.g., in the sequence from

the most to less frequently activated) are: ‘P3’, ‘P4’, ‘Cz’,

‘CPz’, ‘T7’, ‘T8’, ‘Pz’, ‘Oz’, ‘C3’, ‘C4’, ‘FT7’, ‘FT8’, ‘F3’,

‘F4’, ‘CP3’ and ‘CP4’, which are illustrated in Fig. 2. It

Fig. 2. An illustration of the most correlated locations for motor
imagery of walking versus idle in a 10-20 EEG system.

can be further observed that the most correlated brain area

to the motor imagery of walking action are concentrated in

the medial primary sensorimotor cortices and the supplemen-

tary motor area, which is consistent with the evidence from

positron emission tomography (PET) and functional magnetic

resonance imaging (fMRI) [10].

4. CONCLUSIONS

In this paper, we investigate the novel problem of detecting

motor imagery of walking for stroke rehabilitation. The lapla-

cian derivates (LAD) of power features for selected channels

are used to eliminate the interference between electrodes.

We propose to select the most correlated channels by jointly

optimizing towards the maximum dependency between the

features of LAD channels and class labels, and the minimum

redundancy between the features of LAD channels with that

of selected LAD channels. Experimental results demonstrate

that by selecting as few as 4 LAD channels, we still achieve

an acceptable classfication accuracy of 67.19%, which is

slightly lower than 71.45% and 73.23% achieved by selecting

10 LAD channels and using 22 LAD channels. These results

demonstrate that we can detect motor imagery of walking

with fewer LAD channels. Comparisons with other methods

demostrate significant better performance than filter bank

with power features and CSP methods. Most importantly,

our proposed method achieves superior performance for poor

BCI performers compared with other methods. Statistical

tests with 95% confidence show that only one out of eleven

subjects performed at chance level. Our future work is to

conduct clinical trials for the stroke patients.
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