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ABSTRACT

The paper presents a novel concept implementing a phase locking
value index estimation in application to brain-computer interfacing
(BCI) motor imagery paradigm. We propose to decompose first the
pairs of EEG channels using a bivariate empirical mode decompo-
sition (BEMD) method. Next, the phase locking values (PLV) are
estimated for the obtained intrinsic mode functions resulting in dis-
criminating features drawn from EEG channel pairs representing the
two different lateral hemispheres. Numerical results suggest that the
PLV induced from BEMD can effectively detect phase synchrony
between electrodes and is a promising feature for BCI implementa-
tion.

Index Terms— BCI, EEG signal processing, bivariate EMD,
phase synchrony, multivariate signal processing

1. INTRODUCTION

The state of the art brain–computer–interfaces (BCI) rely mostly
on visual and imagery paradigms [1], which depend on EEG am-
plitude information that is unfortunately very sensitive to electrode
impedance variability. Recent research reports have proposed to uti-
lize EEG signal phase information [2, 3, 4, 5, 6] in order to avoid the
signal amplitude related problems. To detect the phase synchroniza-
tion, the so-called phase locking value (PLV) has been widely used
[2]. To calculate the PLV, the observed EEG is decomposed into
narrow-band signals by time-frequency analysis such as wavelets,
and the phase difference between the EEG signals at two electrodes
is evaluated. If two narrow-band signals are fully synchronized, the
PLV has the value of unity.

This idea has been exploited to extract features aiming at BCI
[3, 7, 8, ?, 9, 10, 11]. In [3, 12, 7, 8, 10], the PLV is extensively
used and studied as a feature of mental tasks such as motor-imagery.
However, there is a limitation of detecting the phase-synchrony by
using the PLV, when using time-frequency transformations. The sig-
nal component synchronized at different areas in the brain is rarely
a narrow-band signal, since the frequency and the amplitude slightly
fluctuate. Therefore, the synchronizing component can be decom-
posed into multiple narrow-band components, where the PLV cannot
well quantify the phase synchrony.

A very efficient method for decomposing a signal into amplitude-
and frequency-fluctuating functions (intrinsic mode functions (IMFs))
is the empirical mode decomposition (EMD) [13]. To solve the
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aforementioned problem, the EMD is utilized for obtaining the PLV
through the instantaneous phase to evaluate the phase synchroniza-
tion during motor-imageries [11]. However, in [11], the EMD is
independently applied for each electrode, and therefore it can gener-
ate the different number of IMFs at different electrodes. This implies
that IMFs of the same index number at two electrodes span totally
different sub-bands.

To solve this problem, we propose to analyze EEG phase locking
value (PLV) with utilization of data–driven bivariate empirical mode
decomposition (BEMD) [14] method. In order to do so, we first
decompose the pairs of recorded signals into the so called intrinsic
mode functions (IMF) with utilization of the BEMD technique. Next
we analyze the PLV indexes for the pairs of IMFs originating from
between different EEG channel pairs. Finally we identify those PLV
results which allow for discrimination of movement imagery patterns
on the classical left/right hand movement paradigm.

From now on the paper is organized as follows. First we in-
troduce the EEG recording experiment details. Next we discuss the
BEMD signal decomposition leading to the pairwise PLV indexes
analysis of the band limited and accurate instantaneous phase con-
taining components. Finally we present the very encouraging results
of inter–hemispheres PLV indexes variability allowing for the move-
ment imagery patterns detection and lateral discrimination. The re-
sults discussion concludes the paper.

2. METHODS

The experiments reported in this paper have been conducted on
voluntary bases in the Advanced Brain Signal Processing Labora-
tory of RIKEN Brain Science Institute, Japan. The experimental
paradigm was a classic movement imagery task [1]. The subject
imagined sequentially left and right hand oscillatory movements for
about four seconds each. The EEG electrodes were connected to
the head channels C1, C2, C3, C4, C5, C6, T7, T8, CP1, CP2,
CP3, CP4, CP5, and CP6, as in extended 10/20 EEG recording
systems. The EEG signals were sampled with 512 Hz frequency.
The electrode impedance was maintained below 10 kΩ using the
g.USBamp biosignal amplifier. A single experiment consisted of a
sequence of relaxation, followed by left and right hand movement
imageries, respectively. The number of individual left hand and right
hand trials was set to five. The recorded and analyzed signals were
artifact free (visual inspection). The recorded data were used next
to derive phase locking value based features to distinguish different
motor imagery stages (relaxation and left vs. right). We propose a
data adaptive multi–band approach to observe the phase synchrony
of different EEG channels using bivariate empirical mode decom-
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Fig. 1. The IMFs (1 − 10) out of 14 of the EEG channels C1 and T8
obtained by applying BEMD.

position (BEMD) [14]. Each pair of the available EEG channels is
decomposed together into a finite number of sub–bands taking into
account their co-variation.

2.1. BEMD Analysis of EEG Signals

The Empirical Mode Decomposition (EMD) is a signal processing
decomposition technique that decomposes the signal into waveforms
modulated in both amplitude and frequency by extracting all of the
oscillatory modes embedded in the signal [13]. The Complex Em-
pirical Mode Decomposition (Complex-EMD) is an extension of the
basic EMD suitable for dealing with complex value signals [15]. The
motivation to extend EMD was that a large number of signal pro-
cessing applications have complex value waveforms. In addition,
this extension is applied to both real and imaginary parts simulta-
neously because complex valued signals have a mutual dependence
between the real and imaginary parts. Thus, if the decomposition is
done separately, the mutual dependency could be lost.

The Bivariate Empirical Mode Decomposition (BEMD) is a
more generalized extension of the EMD to complex valued signals.
The main difference between the BEMD and the Complex-EMD is
that the latter uses the basic EMD to decompose complex signals,
whereas the BEMD adapts the rationale underlying the EMD to a
bivariate framework [14, 16]. In BEMD two variables are decom-
posed simultaneously based on their rotating properties. The BEMD
algorithm, as proposed in [14], is as follows:

1) For 1 < m < M,

a) Project x(t) on direction ϕm as: pϕm = Re(e−iϕm x(t));

b) Extract the maxima of pϕm (t) from: (tm
i , p

m
i );

c) Interpolate the set of points(tm
i , e

iϕm pm
i ) to obtain the

partial envelope curve in direction ϕm named eϕm (t).
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Fig. 2. The PLV of individual IMFs for 13 EEG channels with re-
spect to the first one (C1 electrode).

2) Compute the mean of all tangents: e(t) = 2
M

∑
m eϕm (t).

3) Subtract the mean to obtain d(t) = x(t) − e(t).

4) Test if d(t) is an IMF,

– If yes, repeat the procedure from step 1 on the residual
signal;

– If not, replace x(t) with d(t) and repeat the procedure
from Step 1.

The bivariate EMD can now be expressed as:

x(t) =
∑

k

dk(t) + r(t), (1)

where dk(t) denotes the kth extracted complex empirical mode and
r(t) the residuum. The BEMD is employed to decompose a pair of
EEG channels together. The IMFs 1–10 of C1 and T8 EEG channels
for left hand movement motor imagery are illustrated in Fig. 1.

2.2. BEMD-Based EEG Phase Synchrony Detection

To determine the phase synchrony [5] two different EEG channels
are decomposed into a finite number of IMFs using BEMD. A com-
plex valued vector x(t) is defined as: x(t) = c1(t) + jc2(t); where
c1(t) and c2(t) are two EEG channels. Each IMFs d(t) obtained from
Eq. (1) has real and imaginary components yR(t) and yI(t) respec-
tively. The IMF’s real part yR(t) corresponds the intrinsic mode of
channel c1(t) and yI(t) of channel c2(t) respectively. The BEMD
method is used as the preprocessor in face of the unwrapping prob-
lem in the Hilbert transform [13]. The instantaneous phase of a given
signal y(t) is computed as:

ỹ(t) =
1
π
Θ

[∫ +∞

−∞

y(τ)
t − τdτ

]
(2)

φ(t) = arctan
ỹ(t)
y(t)

(3)

where ỹ(t) is the Hilbert transform of y(t), Θ[·] implies the Cauchy
principal value and φ(t) represents the instantaneous phase of the
signal y(t). Since the calculation of the Hilbert transform requires
integration over infinite time, 10% of the calculated instantaneous
values are discarded on each side of the processing window.

Given a pair of IMFs yR(t) and yI(t), the phase difference is de-
fined as △θ(t) = mφR(t) − nφI(t); where m and n are small integers
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that define the frequency equality mφR(t) = nφI(t) of the coupled
slow and fast oscillations (here m : n = 1 : 1), φR(t) and φI(t) are the
instantaneous phase of yR(t) and yI(t) respectively. This phase differ-
ence is fluctuating and a statistical criterion is employed to quantify
the degree of phase locking. Then phase locking value (PLV) δ can
be defined as:

δ =

∣∣∣∣∣∣∣ 1T
T−1∑
t=0

e j△θ(t)

∣∣∣∣∣∣∣ (4)

In the case when the two signals are completely synchronized, △θ(t)
is a constant and PLV equals the unity. Conversely, if two signals
are unsynchronized, △θ(t) follows a uniform distribution and PLV
equals to zero.

3. EXPERIMENTAL RESULTS

After the first decomposition step of each EEG channel pairs, us-
ing the BEMD, into complex valued IMFs, each of them is next
separated to real and imaginary vectors representing both processed
EEG channel as shown in Fig. 1. The highest order (lower frequen-
cies) IMFs are considered empirically to represent the artifacts (e.g.
EOG) and hence not included in the subsequent PLV processing.

3.1. Maximum Phase Synchrony

The PLVs of individual IMFs of a pair of EEG channels are cal-
culated using Eq. (4). The cross PLVs estimates of the 13 EEG
channels with respect to the first channel (C1 EEG electrode) are
illustrated in Fig. 2. It is shown there that the lower and higher order
IMFs are more synchronized than the middle order.

If δi(p, q) represents the PLV between channels p and q at ith

IMF, the maximum phase synchrony is defined as,

δ̂(p, q) = max
i=1,2,...K

δi(p, q), (5)

where K is the total number of IMFs used in PLV processing. It
implies that one of the IMFs exhibits maximum phase synchrony
between the EEG channels p and q. The maximum PLV (among all
IMFs) between the first channel (C1) and qth, (q = 1, 2, . . . , 14) i.e.
δ̂(1, q), is shown in Fig. 3.

In [11], the PLV of the relaxation period is used as the refer-
ence PLV to construct the distinguishing features for different motor
imagery stages. In this experiment, the EEG of the sequence of re-
laxation as well as left and right hand imagery are recorded. Three
EEG data sets (14 EEG channels each) corresponding to relax, left
and right hand imagery movement are extracted from the mentioned
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Fig. 4. Cross-channel PLV of relax stage for all possible pairs of the
14 EEG channels.

recordings. The cross-channel PLV matrices δ̂relax(1, q), δ̂le f t(1, q),
and δ̂right(1, q) of individual motor events are computed first. The
cross-channel PLV matrix (the all possible pairs of the 14 EEG chan-
nel set) with EEG of the relaxed stage is shown in Fig. 4.

Then the cross-channel PLV of motor imagery movement is next
calculated (normalized) as follows:

δ̄(p, q) =
δ̂le f t(p, q) − δ̂relax(p, q)

δ̂relax(p, q)
× 100. (6)

The normalized cross-channel PLV for left and right hand move-
ment motor imagery δ̄L(p, q) and δ̄R(p, q) respectively is obtained
using Eq. (6) and illustrated in Figs. 5(a) and 5(b), respectively.

3.2. Local PLV

To distinguish between left and right hand movement motor im-
ageries the two pairs of electrodes (T7, T8) and (C1,T8) are se-
lected as illustrative example. We observed that the mentioned pairs
can significantly differentiate between left and right hand motor im-
ageries in our experiments. A time window of 1 s is adopted for cal-
culating the local PLV ρ(t), where t represents the time window. The
PLV within the specified time window t is calculated using Eq. (5).
Then the local PLV is calculated in relation to the pre-task 4 s long
relaxation period as:

ρre f =
1
T

T∑
t=1

ρ(t), (7)

with ρr(t) obtained from

ρr(t) =
ρ(t) − ρre f

ρre f
× 100 [%]. (8)

where ρre f is the mean local PLV of the reference (relaxation) period
and ρr(t) is the PLV as shown in Fig. 6(a). Note that the local PLV of
the mentioned two pairs of electrodes can differentiate properly the
left and right hand motor imageries.

To justify the use the proposed method we compared the BMED
with an univariate EMD (UEMD) EEG preprocessing for the same
dataset as that used in the upper panel of Fig. 6(a). The result is
presented in Fig. 6(b). Note that the classical UEMD preprocessing
did not allow for the discrimination of PLV indexes in the movement
imagery experiment.
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4. CONCLUSIONS

In the presented paper we have proposed a novel method to ana-
lyze EEG signals in BCI movement imagery paradigm using the
phase locking information instead of the classical signal amplitude
or power classification, which is very sensitive to the recording con-
dition variability (unstable electrode impedance, etc.). The data–
driven signal decomposition method BEMD has been applied for
the pairwise EEG channels decompositions leading to the resulting
PLV based phase synchrony analysis. The resulting PLV indexes il-
lustrating the dynamic phase relationship dynamics allowed us to
distinguish among relax and left/right movement imagery stages,
taking into account EEG electrodes originating from the two differ-
ent lateral brain hemispheres. We also have compared the proposed
method based on BEMD EEG preprocessing with the UEMD case,
which has also shown the superiority of the proposed approach. Pre-
processing with UEMD did not result with satisfactory discrimina-
tion of PLV indexes for various movement imageries.

The presented research is a step forward in EEG multivariate
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result with satisfactory movement imagery discrimination as compared with
the proposed method using BEMD for preprocessing as shown in Fig. 6(a).

Fig. 6. Comparison of re-calculated local PLV between BEMD and
classical UEMD methods.

signal processing leading to the robots and phase information based
BCI application approaches. We plan the further online application
of the proposed methodology in an online BCI test with many sub-
jects.
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