
IDENTIFICATION OF GENES CONSISTENTLY CO-EXPRESSED IN MULTIPLE 

MICROARRAY DATASETS BY A GENOME-WIDE BI-COPAM APPROACH 

 

Basel Abu-Jamous1, Rui Fa1, David J. Roberts2, Asoke K. Nandi1,3 

 
1Department of Electronic and Computer Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK; 

2National Health Service Blood and Transplant, The University of Oxford, Oxford, UK; 
3Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland 

{Basel.AbuJamous, Rui.Fa}@brunel.ac.uk, david.roberts@ndcls.ox.ac.uk, asoke.nandi@brunel.ac.uk 
 

ABSTRACT 
 
Many methods have been proposed to identify informative subsets 
of genes in microarray studies in order to focus the research. For 
instance, the recently proposed binarization of consensus partition 
matrices (Bi-CoPaM) method has, amongst its various features, the 
ability to generate tight clusters of genes while leaving many genes 
unassigned from all clusters. We propose exploiting this particular 
feature by applying the Bi-CoPaM over genome-wide microarray 
data from multiple datasets to generate more clusters than required. 
Then, these clusters are tightened so that most of their genes are 
left unassigned from all clusters, and most of the clusters are left 
totally empty. The tightened clusters, which are still not empty, 
include those genes that are consistently co-expressed in multiple 
datasets when examined by various clustering methods. An 
example of this is demonstrated in this paper for cyclic and acyclic 
genes as well as for genes that are highly expressed and that are 
not. Thus, the results of our proposed approach cannot be 
reproduced by other methods of genes’ periodicity identification or 
by other methods of clustering. 

 

Index Terms— Bi-CoPaM, co-expressed genes, 

genome-wide clustering, microarray data analysis 

 

1. INTRODUCTION 
 
Advances in microarray technology have enabled the measurement 
of expressions of a huge number of genes simultaneously. Most 
microarray experiments consider measuring the expression values 
of the entire genome (all of the genes) of a specific organism over 
multiple time-points, biological developmental stages, different 
types of tissues, or different conditions. The resulting data structure 
is a gene-sample or a gene-time-point matrix whose rows represent 
genes and whose columns represent samples or time-points [1]. 

Although these microarray datasets include thousands of 
genes which represent the entire genome, most of the genes in the 
dataset are expected to be irrelevant in a specific case study [1]. 
So, many studies resort to filtering the genes in order to keep a 
small subset of informative genes only. This small subset can be 
exposed to further analysis, such as clustering. Gene clustering 
mines for co-expressed genes, i.e. genes with similar expression 
profiles. Although co-expression does not necessitate that these 
genes have the same biological function, it indicates that they may 

do; so, clustering lights up some promising regions of further 
biological experimentation [2]. 

The gene-filtering step has been carried out by different 
approaches, which in many cases depend on the nature of the 
dataset under consideration. For example, many datasets have been 
generated by measuring the expression of the budding yeast ~6000 
genes over two yeast cell-cycles [3,4,5,6]; the subset of genes 
which show periodic expression profiles over these cell-cycles was 
chosen as the subset of further analysis by many studies [3,4,5,6,7]. 
Many other studies choose differentially expressed genes as the 
subset of genes for further concentration. The problem of 
identifying differentially expressed genes has been tackled in 
various approaches, but, in general, differentially expressed genes 
are those whose expression profiles show high expression and/or 
high fold-changes over different time-points or conditions [1,2]. 

The gene clustering step has been approached by many non-
ensemble methods, e.g. k-means [8], hierarchical clustering (HC) 
[7,9], self-organizing maps (SOMs) [10,11], self-organizing 
oscillator networks (SOON) [12], and ensemble methods, e.g. 
relabeling and voting [13], co-association matrix [14], hypergraph 
methods [15], and the recently proposed binarization of consensus 
partition matrices (Bi-CoPaM) [16,17]. In contrast to most of the 
other methods, Bi-CoPaM provides the unique ability to generate 
tunable wide overlapping clusters with many multiply assigned 
genes as well as tunable tight clusters while leaving many genes 
unassigned from all clusters [16,17]. 

Bi-CoPaM clusters the expression profiles of the same set of 
genes from multiple microarray datasets and/or by using various 
clustering methods. The generated partitions are then combined 
into a single fuzzy consensus partition matrix (CoPaM) which is 
then binarized by one of the six Bi-CoPaM binarization techniques 
to provide the final binary partition [16,17]. 

In this study, we propose a novel way of using the Bi-CoPaM 
method by (i) applying it over the entire genome rather than a 
filtered subset, (ii) clustering the same set of genes from multiple 
microarray datasets, (iii) using a large number of clusters (K), and 
(iv) exploiting the tightness feature in order to obtain a small 
number of non-empty clusters which include a few genes that bare 
the characteristic of being consistently co-expressed in multiple 
datasets. This approach of using the Bi-CoPaM embeds the 
filtering step within the clustering step in a tunable way. 

 

2. METHODS 
 

2.1. Bi-CoPaM 
 
The Bi-CoPaM method consists of four main steps [16,17]: 
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1. Generation of many partitions for the same set of genes by 
applying various clustering methods over the expression 
profiles of these genes from multiple microarray datasets. 

2. Relabeling the generated partitions such that each cluster 
from one partition is matched with its corresponding 
cluster from every other partition. 

3. Fuzzy consensus partition matrix (CoPaM) generation by 
element-by-element averaging of the relabeled partitions. 

4. Binarization of the CoPaM by one or more of the six 
tunable binarization techniques proposed in [16]. 

The six binarization techniques scrutinize the CoPaM in 
different ways to produce binary partitions with different features. 
Our concentration in this study is mainly on the difference 
threshold binarization (DTB) technique. 

Conventional binarization assigns each gene to the cluster in 
which it has its maximum fuzzy membership; this generates 
complementary clusters in which each gene is exclusively assigned 
to one and only one cluster. The DTB technique imposes a stricter 
policy; it assigns this gene to that maximum-membership cluster 
only if the closest cluster competing on this gene has a fuzzy 
membership value which is lower than the maximum by at least the 
value of the parameter (𝛿). Otherwise, the gene is unassigned from 
all of the clusters accordingly. Tighter clusters with more 
unassigned genes are obtained when 𝛿 is increased until it reaches 
one. When its value is one, only genes that have been consensually 
assigned to the same clusters by all of the single partitions are 
preserved; all of the other genes are left unassigned. 

 

2.2. Mean Squared Error (MSE) Metric 
 
The mean squared error (MSE) metric has been used by many 
studies to evaluate the quality of the generated clusters so that 
comparisons between different methods can be performed [18,19]. 
We adopt the MSE metric for evaluating the generated clusters. 

Because the total number of genes assigned to the clusters by 
Bi-CoPaM at any specific tightness level is variable, we use a 
normalized MSE measure to be per gene. The 𝑀𝑆𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟 metric 

which quantifies the total MSE for the 𝑘𝑡ℎ cluster is defined as: 

 𝑀𝑆𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑘) =
1

𝑁 ∙ 𝑀𝑘
∑ ‖𝑥𝑖 − 𝑧𝑘‖2

𝑥𝑖∈𝐶𝑘

, (1) 

where 𝑁 is the number of dimensions (time-points) in the dataset, 

𝑀𝑘 is the number of genes in the 𝑘𝑡ℎ cluster, 𝐶𝑘 is the set of 

genetic expression profiles {𝑥𝑖} for the genes in the 𝑘𝑡ℎ cluster, and 

𝑧𝑘 is the mean expression profile for the genes in the 𝑘𝑡ℎ cluster. 
If multiple datasets were used for clustering, genes profiles 

and the clusters centroids will vary from one dataset to another for 
the same partition. In this case, the MSE metric can be calculated 
multiple times for each dataset and then averaged over them. 

 

3. DATASETS 
 
We consider six yeast cell-cycle microarray datasets in our study. 
Each of these datasets measures the genetic expression of the entire 
yeast genome (~6000 genes) over about two complete yeast cell-
cycles. The details of the datasets are listed in Table 1. 

The first column shows the unique name which is used 
hereinafter to refer to each of these datasets. The names of the first 
four datasets, as commonly used in the literature, were derived 
from the synchronization methods used in producing them. The 
last two datasets were generated by Orlando and colleagues [6]. 
Orlando and colleagues generated four datasets, two of which are 
used in our study; they are those which they labeled as “wild-type 

replicate 1” and “wild-type replicate 2”. Accordingly, we refer to 
these two datasets respectively as orl-wt1 and orl-wt2. See Table 1. 

The second to the seventh columns of Table 1 respectively 
show the year in which the dataset was published, total number of 
genes, number of time-points, time spacing between each two 
consecutive time-points, number of allowed missing values in any 
single gene not to be filtered out, and reference. 

There are 4910 genes that are common to the six datasets and 
do not have more missing values than allowed. These genes were 
the ones considered in our Bi-CoPaM clustering experiments. 

 

4. EXPERIMENTAL SETUP 
 
The considered 4910 genes were clustered into 25 clusters by k-
means with Kauffman initialization (KA) [8], self-organizing maps 
(SOMs) with bubble neighborhood and five-by-five grid, and 
hierarchical clustering (HC) with Ward linkage. This was applied 
over their profiles from all of the six datasets. Generated partitions 
were relabeled by a min-min approach and then combined into a 
single CoPaM matrix. Because alpha-30 and alpha-38 were 
generated by technical replication, each of them was given half 
weight in generating the CoPaM. Similarly, the Orl-wt1 and Orl-
wt2 datasets are biological replicates and were given half weight in 
combination. The CoPaM was binarized by the DTB technique 
with 𝛿 values ranging from zero to one and then analyzed by MSE. 

Prior to clustering, the one-color datasets cdc28, orl-wt1 and 
orl-wt2 were normalized by quantile normalization [20] then by 
making each gene’s expression profile zero-mean and unity 
standard deviation. The log-ratios of the two-color datasets alpha, 
alpha-30 and alpha-38 were zero-centered by subtracting genes’ 
log-ratios’ mean values [21]. 

 

5. RESULTS 
 
The numbers of genes in the tightest 15 clusters at all of the 𝛿 
values are shown in Table 2. Clusters were ordered based on their 
tightness, such that those clusters that preserve at least seven genes 
up to higher 𝛿 values are considered tighter. When many clusters 
preserve at least seven genes up to the same 𝛿 value, they are 
ordered based on the number of genes they include at that level. 

The interpretation of the inclusion of a set of genes within one 
cluster at the 𝛿 = 1 case is that these genes were assigned to the 
same cluster by all of the partitions. In other words, they are co-
expressed, i.e. they show the same expression profile, in all of the 
considered datasets and when clustered by all of the adopted 
clustering methods. On the other hand, the genes included at lower 
levels of 𝛿 were assigned to the same cluster significantly more 
than to any other cluster. The definition of ‘significantly more’ is 
tunable and controlled by 𝛿. The fact that these genes were not 
assigned to the same cluster by some partitions can be because of 
the differences between the clustering methods or because these 
genes show less co-expression in some of the considered datasets. 

Table 1. Budding yeast cell-cycle microarray datasets 

Name Year Genes Time 

points 

Spacing 

(min) 

Missing 

values 

allowed 

Ref. 

Cdc28 1998 6223 17 10 1 / 17 [3] 

Alpha 1998 6178 18 7 1 / 18 [4] 

Alpha-30 2006 6266 25 5 1 / 25 [5] 

Alpha-38 2006 6266 25 5 1 / 25 [5] 

Orl-wt1 2008 5667 15 16 0/15 [6] 

Orl-wt2 2008 5667 15 16 0/15 [6] 
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Each gene is definitely assigned to at least one cluster at 
DTB 𝛿 = 0. So, considering the clusters’ contents at this level of 
tightness for further analysis means considering all of the genes 
whether they were relevant or not. When tightness increases, many 
clusters shrink quickly, and many genes are left unassigned. These 
quickly lost clusters and genes are considered relatively irrelevant 
because they do not show consistent co-expression at different 
conditions. The contents of the clusters which survive up to high 
levels of tightness are more informative and worth being 
considered for further analysis. 

 

5.1. MSE Analysis 
 
The MSE values for each of tightest seven clusters were calculated 
at all of the DTB 𝛿 values. Each of these MSE values was 
calculated based on the six datasets and then averaged and plotted 
in Figure 1 (a). Figure 1 (b) shows the numbers of genes included 
in each of these seven clusters at all of the DTB 𝛿 values. Missing 
points in both plots represent empty clusters. 

It can be seen in this Figure that the MSE values generally 
support the Bi-CoPaM results in that the clusters that lose genes 
quicker tend to show higher (worse) MSE values. Moreover, after 
the fifth cluster, clusters start to show significantly higher values of 
MSE with significantly lower numbers of genes included. Thus, we 
consider the first five clusters C1 to C5 as significant and discard 
the rest of the clusters for our current study. 

The importance of considering both plots (a) and (b) in Figure 
1 in tandem is because the differences in clusters’ sizes at different 
𝛿 values make them incomparable by merely using the MSE. For 
example, C2 at 𝛿 = 0.9 has the perfect MSE value of zero, but this 
is because it includes only a single gene. Another example is C4 
whose MSE value shows a small increase from 𝛿 = 0.5 to 𝛿 = 0.3 
while the number of genes included in it increases significantly 
from 21 to 77. In other words, the best tightness level of any 
cluster can be chosen such that it includes as many genes as 
possible while maintaining a reasonable value of MSE. 

Accordingly, we intuitively choose the best tightness level for 
each of the five clusters C1 to C5. We call the chosen cases as the 
cores of these clusters, see Table 3. Note that the total number of 
genes included in all of these five clusters’ cores is 187 genes out 
of possible 4910 genes originally included in the study. 

The expression profiles for all of the genes included in each of 
these five clusters’ cores from the two datasets cdc28 and orl-wt1 
are plotted in Figure 2. Although the expression profiles in the 
other four datasets are not identical to these two, these plotted 
profiles are representative and serve well in demonstrating that 
these core genes are consistently co-expressed in multiple datasets. 

5.2. Comparison to the Literature – Periodicity 
 
Many studies which considered one or more of these six yeast cell-
cycle datasets in their analysis have started by identifying those 
genes that are cell-cycle regulated, i.e. that show periodic 
expression profiles over cell-cycles. The studies in [3], [4], [5] and 
[6] have respectively identified 384, 800, 1000 and 1271 genes as 
periodic, and they performed their further analysis over these 
subsets of genes. Some studies considered analyzing these subsets 
of genes or an intersection between some of them [6,7,17]. 

The numbers of genes included in each of the five clusters 
cores C1 to C5 and considered periodic by each of the 
aforementioned four studies are listed in Table 4. The numbers in 

Table 2. Numbers of genes included in each of the 15 tightest clusters at all of the considered 𝜹 values 

Tightness 𝜹 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

Complementary 0.0 123 489 270 568 686 541 530 395 360 290 226 259 172 141 179 

 0.1 59 269 143 235 241 203 174 107 86 67 52 53 48 24 38 

 0.2 44 196 98 179 120 96 69 35 26 23 23 21 15 9 9 

 0.3 35 135 57 77 42 29 19 4 4 3 6 3 5 2 0 

 0.4 31 99 42 41 24 12 8 2 1 1 2 1 0 0 0 

 0.5 26 70 28 21 10 5 2 0 0 0 2 1 0 0 0 

 0.6 24 41 19 2 0 0 0 0 0 0 0 0 0 0 0 

 0.7 22 16 6 0 0 0 0 0 0 0 0 0 0 0 0 

 0.8 19 4 4 0 0 0 0 0 0 0 0 0 0 0 0 

 0.9 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tightest 1.0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 3. Cores of clusters C1 to C5 

 C1 C2 C3 C4 C5 

𝛿 value 0.4 0.6 0.5 0.3 0.5 

Number of genes 31 41 28 77 10 

Average MSE 0.097 0.086 0.122 0.113 0.101 
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Figure 1. (a) Average MSE values and (b) number of genes 

included for the tightest seven clusters. 
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this Table and the profiles in Figure 2 lead to the same conclusion 
that the clusters C1, C3 and C4 are cell-cycle regulated (cyclic) 
while C2 and C5 are not. All of the five clusters from the Bi-
CoPaM method, including the ones detected by previous cell-cycle 
studies and the ones that were not, follow the same criterion: these 
sets of genes are co-expressed with each other in six different 
datasets when examined by various clustering methods. 

 

5.3. Expression Levels Analysis 
 
Based on the cdc28 dataset, the quartiles of the 4910 genes peak 
values were calculated and listed in the first row of Table 5. The 
last row of the Table shows the numbers of genes from the 187 Bi-
CoPaM core clusters’ genes whose peak expression levels are 
between each two consecutive quartiles. It can be seen in this 
Table that significant numbers of these core genes are within each 
of these four quartile-intervals. This indicates that expression-
level-based gene-filtering prior to Bi-CoPaM clustering cannot be 
used to focus such analysis. 

 

6. DISCUSSION AND CONCLUSIONS 
 
We have proposed a novel approach of using the binarization of 
consensus partition matrices (Bi-CoPaM) method over genome-
wide microarray datasets in order to identify a small subset of 
genes organized within clusters to allow for more focused 
biological analysis. Abu-Jamous and colleagues have proposed the 
Bi-CoPaM method as an ensemble clustering method which allows 
for generating wide overlapping clusters and/or tight clusters with 
many genes being unassigned from all clusters [16]. They also 
proposed applying this method over the expression profiles of the 
similar set of genes from multiple datasets [16,17]. That approach 
was useful to mine for groups of genes that are co-expressed (have 
the same expression profile) in multiple datasets consistently. In 
their first study, they tested Bi-CoPaM over a synthetic dataset of 

cyclic genes’ profiles which belong to five clusters [16], and in 
their second study over 500 cyclic yeast genes from five different 
yeast cell-cycle datasets [17]. 

Our approach in this paper mines the entire set of genes 
within the available microarrays, i.e. the entire genome, for genes 
that are consistently co-expressed in multiple datasets. This is 
different from those previous studies in that – (i) no a priori 
filtering of genes must be carried out before applying the Bi-
CoPaM, i.e. all informative and noisy genes are included in the 
study initially, and (ii) it is able to identify genes that are 
consistently co-expressed in multiple datasets whether they were 
cyclic or not (e.g. core clusters C2 and C5 in our analysis), and 
whether their expression levels are differentially high or not. 

Our approach of applying Bi-CoPaM not only serves as a way 
of finding useful clusters; it also serves as a way to identify 
focused informative genes subsets from the entire set of available 
genes. Many studies aimed at identifying such informative subsets 
of genes in different ways, e.g. Cho [3], Spellman [4], Pramila [5], 
as well as Orlando [6] and their colleagues, have identified 
different subsets of yeast genes by considering their periodicity in 
the yeast cell-cycle. Other research instances, as reviewed by 
Roberts [1], as well as by some others [2], have considered high or 
differential-expression between different time-points or conditions 
as the criterion by which the subsets of interesting genes are 
identified. Although this is expected to minimize the number of 
irrelevant genes in the initial study, many genes that are neither 
periodic nor highly- or differentially-expressed might still be 
identified by our approach as consistently co-expressed with the 
same sets of genes in multiple datasets (e.g. C2 and C5). Thus, 
none of these methods can find the same subsets of genes which 
we have found by applying the Bi-CoPaM over genome-wide 
datasets. Moreover, filtering the complete set of genes by any of 
the aforementioned methods prior to applying the Bi-CoPaM can 
result in loss of information which might still be useful for such 
Bi-CoPaM analysis. Anyway, the filtering step is implicitly 
embedded within this Bi-CoPaM-based approach. 

To conclude, our proposed approach is to apply the Bi-
CoPaM method over genome-wide expression data from multiple 
datasets to generate many clusters, and then to tighten them such 
that only a few tight clusters of genes are obtained. The central 
feature which our approach looks for is that the genes included in 
any of these tight clusters are tightly and consistently co-expressed 
in multiple datasets which might have been generated in different 
labs, in different years, and under different conditions. Some other 
common methods of gene filtering, such as periodically or highly 
expressed genes identification, mine for different features other 
than what our approach mines for. Thus, our approach can find 
novel and important results that are orthogonal to what these other 
methods can find, yet cannot be found by any of them. 

 

Table 4. Periodic genes in the cores of the clusters C1 to C5  

No. Ref. No.  of genes C1 C2 C3 C4 C5 

1 [3] 384 27 0 12 51 0 

2 [4] 800 31 0 21 63 1 

3 [5] 1000 31 4 28 64 3 

4 [6] 1271 31 0 25 65 1 

Table 5. Core genes distribution over expression levels 

Quartile  min Q1 Q2 Q3 max 

Quartile expression value 9 205 393 773 14107 

Core genes in the interval 22 50 67 48  
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Figure 2. Normalized expression profiles for the genes in the cores of the clusters C1 to C5 from the datasets cdc28 and orl-wt1. 
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