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ABSTRACT

This paper derives a sparse optimal perturbation of gene reg-
ulatory networks by determining the optimal perturbation of
the minimal number of individual genes that force the net-
work to settle into desired equilibrium states. Previous efforts
have led to intervention in gene regulatory networks by deriv-
ing the optimal perturbation of the state probability transition
matrix. Current technology in molecular biology, however, is
limited to perturbation of the state of individual genes, not the
state probability transition matrix. Our computer simulation
experiments on the Human melanoma gene regulatory net-
work demonstrate the superiority of the proposed approach to
gene regulation in comparison to the previous methods based
on the marginal of the optimal perturbation of the probability
transition matrix of the network.

1. INTRODUCTION

1.1. Motivation

The biological mechanisms that govern our development are
amazingly integrated and complex. They regulate the ex-
pression of thousands of genes and proteins in any given
cellular function. The spatial and temporal interactions of
these genes and proteins encode the developmental processes
of the cell. Understanding these genomic regulatory net-
works can substantially enrich our knowledge of health and
disease. Subsequently, designing intervention strategies to
control the behavior of these networks and reach desirable
cellular states lies at the heart of modern therapeutic meth-
ods. Moreover, such an optimal intervention strategy must be
biologically-viable given the current technology in molecular
biology, where only downregulation or upregulation of gene
expression levels can be experimentally implemented.

1.2. Related Work

Previous control models, discussed in the literature, relied
mainly on the classical theory of optimal stochastic control
in engineered systems, where external inputs are injected into
the system through some known targets in order to optimize
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a specific objective or cost function [1]. The resulting con-
trol policy is iterative and does not guarantee (at least for the
finite-horizon control) that the steady-state dynamics of the
network have actually changed [2, 3, 4, 5, 6, 7, 8, 9]. Once
the external input is withdrawn, the network is prone to go
back to its original (undesirable) steady-state. Various heuris-
tic interventions, which alleviate the computational burden of
the optimal stochastic control and guide the time evolution of
the network in a heuristic manner, have been proposed [10],
[11], [12], [13], [14], [15].

In biological control, it is essential to be able to control
the underlying rules of the network in order to alter its long-
run or steady-state behavior. There is increasing evidence that
steady-states of biological systems, particularly, genomic reg-
ulatory networks, correspond to phenotypic characteristics,
such as cell proliferation and apoptosis [16]. In contrast to en-
gineered systems, where cost and minimal error are the main
control variables, the effective biological objective function
should be related to the steady-state behavior of the genomic
network.

Bouaynaya et al. formulated optimal perturbation in gene
regulation as a solution to an inverse perturbation problem,
which finds the required perturbation in order to reach a de-
sired stationary state [17], [18]. The solution to the inverse
perturbation problem, casted as a strictly convex optimization
problem, is demonstrated to be unique, globally optimum,
and non-iterative. In particular, it can be solved efficiently us-
ing standard convex optimization methods, [17], [18]. How-
ever, the optimal perturbation control framework in [17], [18]
is formulated in terms of probability transition matrices of
network states and not in terms of perturbations of the gene
expression levels. Given current biotechnology techniques,
it is only possible to experimentally control gene expression
levels. Thus, biological design rules are still needed to trans-
late perturbations at the network state levels into actual per-
turbations of the gene expression levels.

1.3. Main Contributions

Recent efforts have led to intervention in gene regulatory net-
works by deriving the optimal perturbation of the state prob-
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ability transition matrix. Current technology in molecular bi-
ology, however, is limited to perturbation of the state of indi-
vidual genes, not the state probability transition matrix. The
previous efforts therefore relied on the optimal perturbation
of the state probability transition matrix to compute a per-
turbation of the state of individual genes by determining the
marginal of the perturbed state probability transition matrix.
However, there is no guarantee that the resulting perturbation
of the state of individual genes is optimal. Indeed, it is pos-
sible that other perturbations of the state of individual genes
exist which may lead to a superior performance in gene regu-
lation. In this paper, we provide a sparse biologically-viable
optimal perturbation of gene regulatory networks by deter-
mining the optimal perturbation of the minimal number of
individual genes that are consistent with the desired state dis-
tribution. We conduct computer simulation experiments that
demonstrate the superiority of the proposed approach to gene
regulation in comparison to the previous methods based on
the marginal of the optimal perturbation of the state probabil-
ity transition matrix.

2. THE OPTIMAL GENE PERTURBATION
PROBLEM

2.1. Markov Chain Dynamics

We consider a network with p nodes (here genes), where the
expression level of each gene is quantized to [ values. Kim et
al. showed that the dynamics of the network can be modeled
by a homogeneous Markov chain with probability transition
matrix (ptm) P € R™*™, where n = [P [19]. A probability
vector # = (71, ..., ™, )? is called a steady-state distribution
or a stationary distribution of Py if w!P = «!. Since P is
stochastic, stationary distributions always exist.

If the probability transition matrix P is irreducible (i.e.,
all states communicate with each other) and aperiodic, it is
called ergodic. A network governed by an ergodic ptm con-
verges to a unique, strictly positive stationary distribution 7,

in the following sense: lim P™ = 1x’. It is important to
n—00

notice that uniqueness of the stationary distribution does not
imply convergence. In fact, a network may admit a unique
stationary distribution but fails to converge to it [18]. Ensur-
ing convergence towards the steady-state distribution is es-
sential in the framework of optimal control of genomic net-
works. It can be shown that a necessary and sufficient condi-
tion for convergence of the ptm P towards its unique steady-
state distribution is that its Second Largest Eigenvalue Modu-
lus (SLEM) is strictly less than unity [18].

2.2. The Feasible Control

We consider the scenario where the original network, gov-
erned by the ptm F, admits at least one undesirable steady-
state distribution. We would like to linearly perturb the ptm
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Py so that the perturbed matrix converges to the unique de-
sired steady-state distribution. Let us write the perturbed
probability transition matrix P as P = Fy + C, where C
is a zero-row sum perturbation matrix. The zero row-sum
condition ensures that the perturbed matrix P is stochastic.
We denote by 7, the desired stationary distribution. The
goal is, therefore, to design a perturbation C, which ensures
convergence of the perturbed network towards the unique
desired distribution 74. A feasible perturbation matrix, C,
must satisfy the followings four constraints:

(i)
(iid)

Constraint () implies that 74 is a stationary distribution of
the perturbed matrix (Py + C') (not necessarily unique). Con-
straint (i) is equivalent to the stochasticity of the ptm P.
Constraint (¢4¢) is an elementwise inequality and simply en-
sures that all entries of P are non-negative. Constraint (iv)
implies that the stationary distribution 7r;4 is unique and the
perturbed matrix, P, will converge towards it. Let us denote
by .# the set of matrices satisfying constraints () through
(iv), ie, F = {C € R™" : 74(Py + C) = 7,C1 =
0,Py+C > 0,SLEM(FP, + C) < 1}.Itis easy to check that
(17% — Py) € F and thus, the feasible set .# ¢ &. There-
fore, there exists at least one perturbation, which forces the
network to converge towards the desired steady-state.

m(Py+C) =74 (i) C1=0;
Py+C >0; (iv) SLEM(Py+C) < 1.

2.3. The Gene Optimal Perturbation Control

The Markov probability transition matrix, describing the dy-
namics of the network at the state level, is related to the actual
gene network by observing that the probability law describing
the genes’ dynamics can be obtained as the marginal distribu-
tion of the state transition probabilities:

Pr(gi = xilgl te 7gm) = (1)

Zpr(gl =T1," " ,9m :xm‘gl >gm)a
T;

where Z; denotes the set of all z;’s except z;. We define
the gene network matrix, GG, as the matrix whose entries are
the conditional probabilities of the individual genes expres-
sion levels given the current network state, i.e., given the ex-
pression levels of all other genes. We order the columns of
G such that the first [ columns indicate the probabilities of
gene g1 = 0,91 = 1,---,91 = [ — 1, respectively, given
the network states; the next [ columns provide the probabili-
ties of gene go = 0,1, -, given the network states, and so
on. For instance, for a binary quantization (I = 2), we have
G(1,1) = Pr(g1 = Olg1 = 0,92 = 0) = Pr(g1 = 0[00)
and G(1,2) = Pr(g; = 1|00). Formally, the gene network
matrix, for an /-quantization level is defined as

G(i,l(j — 1) + k+ 1) = Pr(g; = k|state ), )
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Fig. 1: Optimal gene perturbed matrix of the Human melanoma gene regulatory network. The matrix plots are obtained using the function
MatrixPlot in MATHEMATICA. The color of entries varies from white to red corresponding to the values of the entries in the range of 0 to
1. They provide a visual representation of the values of elements in the matrix. (a) The initial steady-state distribution (red) of the melanoma
network, the desired steady-state distribution (blue) and the controlled steady-state distribution (green). (b) The original Human melanoma

gene network matrix, Go; (c) The optimal melanoma gene network matrix, G*, corresponding to the steady-state distribution 7r4; (d) The
melanoma gene network matrix obtained as a marginalization of the perturbation in [17] corresponding to the same steady-state distribution.

te{l,--- ™}y, je{l,--- Ixm},ke{0,1,---,l—1}

Given an original gene network matrix Gy, the optimal
perturbed gene expressions correspond to the “closest”, in the
Hamming sense, matrix G which satisfies the constrained dy-
namics of conditions (¢) — (¢v) given in Section 2.1. The
Hamming “norm” is defined as:

HGOvG;DHH :ZN(gj)7 3

j=1
where N(g,) is given by:

n -1
N(gj):;];]p(i) h(GO(ial*(j_1)+k+1)a ()

G@,l*x(j—1)+k+1)).

p(2) is the probability of state 7 given by the desired station-
ary distribution 74 and the function A() is the hamming “dis-
tance” defined as

1’
h(I,y) = { 0,

with ¢ being a specified error tolerance threshold. For bi-
nary quantization (I = 2), N(g,) is the expected number of
flips of gene j after perturbation. The optimization problem in
(3) finds the perturbation matrix, which causes the minimum

iflz—y|>e

iflx >yl <e )
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number of flips (for binary quantization) before and after con-
trol. ||Go, Gp| i is the expected number of flips of all genes
in the network before and after control.

We still need to satisfy the steady-state constraints on the
network to ensure that it converges to the desired steady-state
distribution. In order to do so, we must formulate the con-
straints (2) — (¢v) in terms of the gene network matrices G.
Let b(j — 1) be the binary representation of the number (j-1)
using n bits. Then, b(j — 1)[1] denotes the most significant bit
and b(j — 1)[n] denotes the least significant bit. Under the as-
sumption of independence of gene expression levels, we have

Py = ﬁG(iJ(k—1)+b(j—1)[k]—|—1). ©6)
k=1

The optimization problem resulting from the Hamming
distance objective can be shown to be an NP hard combina-
torial problem. In fact, the Hamming “norm” is equivalent to
the [y norm. We, therefore, propose to approximate the [y or
“Hamming norm” by the convex /; norm. The optimization
problem becomes then one of minimizing |Gy — G||1 subject
to the same constraints. The optimal gene network perturba-



tion problem can then be formulated as

Minimize |G — G||1 subject to 7
2" n

> mali) [] G 1k = 1) + (5 — 1[K] + 1) = ma(3),

i=1 k=1

j=1,--,2m

2" n
STIGG =1 +b( - D[k +1) =1, i=1,--- 2"
j=1k=1
G>0.

Observe that (7) finds the optimal gene perturbation in the
closure, .Z, of the feasible set .%, i.e., .Z contains matrices
satisfying constraints (4)-(7ii) because SLEM(P) < 1 for all
stochastic matrices P. If the optimal gene perturbation satis-
fies SLEM(P) < 1, then the network is forced to converge
towards the desired steady-state distribution. Otherwise, the
optimal solution is at the boundary 0.7 of the feasible set;
thus, the steady-state landscape of the network is modified to
include the desired steady-state but the network does not con-
verge to the desired equilibrium. One can, however, construct
suboptimal solutions as proposed in [18].

Though the /; norm is convex, the constraints are non-
linear in the unknown and thus the problem is not convex
and multiple local solutions exist. We use the interior-point
method to solve this non-convex optimization problem, with
a starting point given by the solution proposed in [17].

3. APPLICATION TO THE HUMAN MELANOMA
GENE REGULATORY NETWORK

We consider the 7-gene Human melanoma gene regulatory
network [5]. Upregulation of the gene WNTS5A was found to
be associated with the metastatic competence of cells. This
implies that a system-level intervention that downregulates
WNTS5A while appropriately regulating the other genes could
be a used as a molecular intervention against melanoma [20],
(51, [21].

The human melanoma gene network was modeled as
probabilistic Boolean network with seven gene: WNTSA,
pirin, S100P, RET1, MART1, HADHB and STC2 [22].
Therefore, with the assumption that the expression level of
each gene is either up (1) or down (0), the melanoma network
has 27 = 128 states. The gene network matrix is 128 x 14
and specifies the probability that each gene is up or down
given the expression levels of the other genes. In the binary
representation, the 7 genes are ordered as WNTSA, pirin,
S100P, RET1, MART1, HADHB and STC2, i.e., the most
significant bit corresponds to the expression level of WTNSA
and the least significant bit is STC2.

In order to appropriately downregulate the WNTS5A gene,
we should assign a zero or near-zero probability of the steady-
state states 64 to 127, which correspond to an upregulated
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Table 1: [; distances between the gene matrices in Fig. 1

{1 distance Go G* G in[17]
Go 0 192.054 | 289.601
G* 192.054 0 196.580
G in [17] 289.601 | 196.580 0

level of WNTSA. In the computer simulations, we considered
adesired steady-state distribution, 74, where states 64-127 are
assigned probability 107, and states 0 to 63 have a uniform
probability mass equal to 0.015525. The original and desired
steady-state distributions are displayed in Fig. 1(a).

We compare our optimal gene perturbed matrix G*, ob-
tained as a solution of the optimization problem in (7), with
the corresponding gene perturbation matrix G obtained by
marginalizing the perturbed matrix in [17]. Observe that both
matrices G* and G satisfy constraints (¢) — (¢v) and thus force
the network dynamics to settle into the desired steady-state
distribution. We found that SLEM (P*) = 0.57 < 1, where
P* is the probability transition matrix corresponding to the
optimal gene matrix G*. Moreover, G* is closer to the orig-
inal melanoma matrix G than G in [17]. MATHEMATICA
plots of all gene network matrices are displayed in Fig. 1. The
[ distances between the gene matrices are displayed in Table
1.

4. CONCLUSION

In this paper, we proposed a sparse biologically-viable opti-
mal perturbation of gene regulatory networks in order to force
the network to settle into a desirable equilibrium. The pro-
posed perturbation affects the gene expression levels rather
than the network states. The optimality criterion is defined in
terms of minimizing the number of perturbations to achieve
desired steady-state dynamics. This is equivalent to the spar-
sity of the perturbation. Deriving optimal interventions that
minimally deviate from the original undesirable network is
crucial in order to minimize adverse effects of the interven-
tion. The proposed optimal perturbation is applied to the Hu-
man melanoma gene regulatory network and is shown to yield
gene expression perturbations that are smaller than previous
methods based on the marginal of the optimal perturbation of
the state probability transition matrix.
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