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ABSTRACT
In this paper a new similarity index for neurograms is pro-

posed. This index is inspired by the Needleman-Wunsch algo-
rithm which determines the minimum number of operations
to transform a vector into another in terms of insertions, dele-
tions and substitutions. The Needleman-Wunsch algorithm
can be extended to the two dimensional case and the number
of transformations required to change a matrix into another is
used to define a measure of similarity. This similarity measure
is applied to neurograms and optimized to perform prediction
of speech intelligibility in noise. Word recognition scores for
for speech samples in noise are evaluated using the proposed
similarity index, showing a clear improvement in speech in-
telligibility estimation with respect to other neurogram simi-
larity metrics in the literature. The proposed similarity index
is not restricted to a certain time resolution and could serve
to evaluate neurogram similarity with respect to temporal fine
structure in future.

Index Terms— neurogram, similarity measure, edit dis-
tance, speech intelligibility.

1. INTRODUCTION

The development of sophisticated computer models of the hu-
man inner ear [1, 2, 3] have made it possible to efficiently and
precisely simulate the discharge patterns of multiple Auditory
Nerve Fibers (ANFs) as a response to auditory stimuli.

Despite of these advances, much is still to be understood
to how the auditory information is coded and represented in
those discharge patterns.
A common tool to represent the neural response of the audi-
tory nerve are “neurograms”, matrices, which show the inten-
sity of neural spiking of multiple ANFs as a function of time
and cochlear location. As the inner ear decomposes signals
according to their frequency components, each cochlear loca-
tion has a corresponding characteristic frequency. Therefore,
neurograms look similar as short-term spectrograms, with the
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difference that the signal phase is coded in spike times, at least
in the low-frequency range up to 1-3 kHz. Neurograms are
useful to characterize the effects of sensorineural hearing loss
[4] and of electrical stimulation in cochlear implant patients
[5]. Neurograms of the auditory nerve are also interesting be-
cause they carry all the information of a sound available to the
central nervous system.

In this investigation we add noise to speech signals and
quantify the degradation of the neurograms. We then com-
pare this degradation to the speech understanding of human
listeners. With this procedure we hope to answer the follow-
ing questions: How robust is speech coded in neurograms?
How does speech coding in noise degrade? How does hu-
man speech understanding correlate with the degrading neu-
rograms?

Some similarity indexes have already been proposed in
the literature:
•Articulation Index [6] (AI) and Neural Articulation
Index[7] (NAI): The AI evaluates speech intelligibility
purely as a sum of the Signal-to-Noise Ratio (SNR) in twenty
frequency bands of the speech sample. The NAI is a variation
of the AI obtained as a weighted sum of the SNR in seven
frequency bands of the neurogram.
•Neurogram Similarity Index Measure(NSIM) [8]: Neu-
rograms can be regarded as images and the similarity among
them assessed using image processing techniques. The Struc-
tural Similarity Index Measure (SSIM) was developed by
Wang et al. [9] to evaluate JPEG compression quality by
assessing image similarity between compressed and uncom-
pressed images in terms of three indexes: intensity, variance
and cross-correlation. The NSIM is obtained by applying the
SSIM to two neurograms.
• Spectro-Temporal Modulation Index [10]: Neurograms
are convolved with the Spectro-Temporal Response Field
which has the form of a spectro-temporal Gabor function
[11] to produce a four dimensional function in time, fre-
quency, rate and scale. This response is averaged over the
frequency to obtain a scale-rate plot. The Spectro-Temporal
Modulation Index is obtained as the average over scale and
rate of the time correlation of the scale-rate plot.
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In this paper we define a similarity measure across neuro-
grams which is based on the number of changes required
to transform one neurogram into another in terms of inser-
tions, deletions and substitutions. We argue that this measure
of neuronal similarity captures the perceptual distance be-
tween two sound samples and outperforms other similarity
indexes proposed in literature. In this paper we focus on pre-
dicting the performance of human listeners to discriminate
Consonant-Vocal-Consonant (CVC) samples.

2. BACKGROUND

2.1. Inner Ear Model

We generated neurograms with a modified inner ear model
developed by the Carney group [1], in which we have tuned
the middle ear filters to human-like hearing thresholds [12].
This model generates random spike trains of multiple ANFs
at different center frequencies. It includes a model of synap-
tic adaptation and generates realistic responses of three dif-
ferent fiber types: High- (HSR), Medium- (MSR) and Low-
(LSR) Spontaneous Rate fibers. Deviating from the physio-
logical composition of the auditory nerve, where HSR fibers
are the dominating population [13], we consider a composi-
tion of ANFs as 10 % for HSR, 20 % for MSR and 70 %
for LSR fibers. This is consistent with the theory that neural
coding may be disproportionately based on the enhanced dy-
namic range of LSR fibers in noisy environments as suggested
in [14].

2.2. Speech Samples

The speech samples considered in our simulations were CVC
words, such as “ship”, from the Arthur Boothroyd (AB) word
list [15] used as a standardized listener test for English na-
tive speakers. In particular, we considered different SNRs of
the speech samples in pink noise; the noise starts 0.2 ms be-
fore each word’s onset, which is required for the adaptation
of the auditory model. This initial stimulation was subse-
quently removed from the responses. Multiple neurograms
were obtained for each speech sample and at SNRs from -15
to 20 dB. Minor adjustments were performed to obtain neuro-
grams with a time duration of 0.8 ms.

2.3. Neurogram Pre-Procession

The auditory model generates ANF spike trains at a time
resolution of 10µs and for 100 different Center Frequencies
(CFs), Greenwood-spaced between 80 Hz and 20 kHz. The
model output was used to obtain the rate-place code (see
[16], [17], [18]), in this paper we used the average discharge
rate of each ANF in 10 ms time bins. The rate-place code
captures only the information contained in the envelope of
the sound signal, nevertheless experiments with chimaeric
sounds reveal that for simple word recognition tasks as few as

four frequency bands, providing only envelope information,
are sufficient for good performance (> 85% word recognition
[19]). Finally the rate-place code was further downsampled to
23 frequency bands using Root-Raised-Cosine (RRC) sam-
pling windows with 50% overlap. However, as it will be
clear in the next section, the proposed similarity index is not
restricted to these particular assumptions on the time and
frequency sampling. The reason for this sampling window
is to obtain a representation which is sufficiently smooth and
to reduce aliasing. In the frequency domain we utilize a
RRC window of unitary power while in the time domain the
RRC window is normalized as to obtain the same mean firing
rate before and after sampling, thus preserving the rate-place
code.

Fig. 1. Sample signal. Top: Spectrogram of the word “wise”
(at +20 dB SNR). Second row: Pre-processed neurogram of
the signal at +20 dB SNR. Third row: Pre-processed neuro-
gram at 0 dB SNR.

Figure 1 shows the spectrogram for a given CVC sound
(top panel) and the corresponding neurograms after time and
frequency averaging for +20 dB SNR (mid panel) and 0 dB
SNR (lower panel).

3. NEUROGRAM MATCHING TRANSFORMATION
INDEX

3.1. The Two Dimensional Levenshtein (2DL) Algorithm

In this section we introduce the Neurogram Matching Simi-
larity Index (NMSI) which is obtained from the approximate
calculation of the two dimensional Levenshtein [20] distance
among neurograms. The Levenshtein distance, also known as
edit distance, is a distance measure for strings of characters
defined as the minimum cost required to change one string
into another in terms of cost of inserting, deleting and sub-
stituting a single character. The Levenshtein distance can be
efficiently evaluated using dynamic programming using the
Needleman-Wunsch algorithm [21] - also known as Sellers al-
gorithm [22] and “optimal string matching” algorithm - which
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has emerged independently in computer science, speech pro-
cessing and bio-informatics.

We focus on a two dimensional extension of the Needleman-
Wunsch algorithm, the 2DL algorithm, which was first pro-
posed independently by Moore in [23] and by Tanaka and
Kikuchi in [24]. In comparing two neurograms, we utilize a
simple variation of the 2DL algorithm where the costs of sub-
stituting an element depend linearly on the absolute value of
the difference between the elements. We introduce three cost
parameters qt, qf and qa for time-, frequency- and amplitude
shift of a spectro-temporal element in a neurogram. Insertion
and deletion cost of an element is set to 1.

We won’t restate the algorithm here but rather refer the
interested reader to [25] and present instead an example.

Example Consider the problem of calculating the edit dis-
tance between the two matrices

M1 =

[
1 2 3
5 8 4

]
, M2 =

 1 1
5 9
3 4

 (1)

when the cost of each transformation is one. The 2DL al-
gorithm provides the the following sequence of operations to
transformation M1 to M2

1) delete the third column, [3 4]T ,
2) substitute the element (1, 2) from 2 to 1,
3) substitute the element (2, 2) from 8 to 9,
4) insert a third row, [3 4].
in which case the two matrices are at a distance of 6. This
example is also illustrated in Fig. 2: the elements in the red
frames are deleted, the blue ones inserted and the green ones
are amplitude-shifted.

Fig. 2. The 2DL algorithm applied to the matrices M1 and
M2 in (1).

3.2. Predicting Speech Recognition Performance in Noise

A simulated listener test was carried out replacing the human
listener by the auditory model and expressing speech recog-
nition in terms of neurogram distance using the NMSI.
We utilized the similarity index from Sec. 3.1 to predict
speech intelligibility as to mimic human performance. We
optimized the cost of time-, frequency- and amplitude-shift.

Speech samples were taken from the phonetically bal-
anced CVC word list by Arthur Boothroyd [15]. We used
the AB word list which contained 12 lists of 10 phonemi-
cally balanced CVC words (120 words). Word recognition

performance of human test subjects in steady-state noise was
simulated by keeping the noise level constant and increasing
the speech level. Noise was spectrally matched to the speech
and held at a constant level of 40 dBSPL (SPL: sound pres-
sure level, relative to 20µPa). Speech signals were added
with SNRs from -15 dB to +20 dB in steps of 5 dB. The
Speech Reception Threshold (SRT), defined as the signal
level at which human test subjects can understand 50% of
spoken words, was reached at an SNR of -11.5 dB [26].

The intuitive reason why we expect the NMSI to be able
to predict speech intelligibility is that the 2DL algorithm pro-
vides a measure on how much the speech signal is impaired
by the added noise. However, as the human auditory system
is able to understand speech in noise even at negative SNRs,
we found it more effective to calculate the distance of speech
in noise to the condition of noise only. This measure is very
sensitive to detect speech information in noise.

4. RESULTS

Figure 3 shows how the NMSI behaves as a function of SNR.
NMSI was calculated for 120 words from the CVC word list.
The distance was calculated for every word relative to 10
reference neurograms at an SNR of -21 dB, where the noise
dominated. With increasing speech level, the neurograms sig-
nificantly deviate from the reference condition. To convert the
NMSI into recognition rates, we apply a trick ([27]): With a
threshold at the median NMSI at the SRT (-11.5 dB, green
dashed line in Fig. 3) – per definition – 50% of the NMSI val-
ues will be above this threshold at this point, which replicates
the case for normal hearing subjects. With increasing SNR,
a larger number of NMSIs calculated for different words will
be above this threshold, predicting a higher recognition score.
For SNRs higher than 10 dB the NMSI predicts already per-
fect recognition. The resulting function is shown in figure
4 (dashed red line) and replicates human performance (solid
blue line) better than the NSIM proposed by Hines et al. [8]
(dashed green line). Please note that the NSIM is intended to
replicate only recognition rates higher than 50%, as for lower
SNRs the NSIM saturates. To match the curve for lower SNRs
would require to set the reference neurogram to clean speech.
Then, noisy speech would have large NSIM values and a simi-
lar thresholding approach would lead to low recognition rates.

We now look into how the NMSI was optimized to predict
human speech perception in noise [26]. This was achieved
by finding appropriate values for the three cost parameters
time-shift qt, frequency-shift qf and amplitude-shift qa. The
penalty function was set to the Mean Square Error (MSE) be-
tween the NMSI prediction and the listener data from [26] at
all simulated SNRs:

MSE =
+20dB∑

SNR = −10dB

|NMSI(SNR)− data(SNR)|2
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The cost of a substitution should always be less than 2.
Otherwise it would be cheaper to simply delete and add an
element which has a cost of 1 for both cases. Therefore cost of
time-, channel- and amplitude-shift also should not be bigger
than 2. Fig. 5 shows the MSE value for qf = 1.6 and varying
qt and qa in that region. The best minimum MSE is found at
approximately (qt, qf , qa) = (2, 1.6, 1).

Fig. 3. NMSI of all neurograms at their respective SNR to
the reference neurograms at -21 dB SNR. Blue boxes mark
the 25% and 75% interquartiles. Red horizontal lines indicate
the mean NMSI. Whisker length is 1.5 times the interquartile
range. Green dashed line shows mean NPRT.

Fig. 4. Simulated speech recognition from the data from fig-
ure 3. Red dashed line shows NMSI results, Green dash-
dotted line shows results for NSIM. Blue solid line show lis-
tener data from [26]. Data are generated by using optimal
parameters as described in section 4. Grey parts of the curves
are not considered in optimization process.

5. CONCLUSION

In this correspondence we propose a new similarity index for
neurograms which we term Neurogram Matching Similarity
Index (NMSI). This index is derived from the edit distance
between matrices and is computed using an extension of the
Needleman-Wunsch algorithm. The NMSI is obtained as
the total cost to transform one neurogram into another using

Fig. 5. MSE between SPIF and PIF for changing parameters
qt and qa. Cost of channel-shift qf = 1.6 is fixed. Minimum
lies around the point (qt, qf , qa) = (2, 1.6, 1).

elementwise time-shifts, frequency-shifts, amplitude-shifts,
deletions and insertions for the case in which a cost is as-
signed to each such operation. In this investigation the cost
of each operation was optimized to predict speech recogni-
tion performance in noise and it was shown that the NMSI
outperforms other similarity indexes proposed in the liter-
ature. Given that the underlying algorithms would support
much higher temporal resolutions than we used in this inves-
tigation (10 ms), we predict a high potential of the NMSI to
evaluate also the temporal finestructure present in auditory
neurograms.

6. RELATION TO PRIOR WORK

Hines et al. [8] proposed a Neurogram Similarity Index
(NSIM), which is based on image processing techniques.
Other approaches are given in [7, 6, 10]. To our knowledge
the 2DL algorithm [23, 24] proposed in this paper as basis
for a new Neurogram Matching Similarity Index (NMSI) was
applied to auditory neurograms for the first time here.
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