
PARALLEL ARCHITECTURE AND HARDWARE IMPLEMENTATION OF

PRE-PROCESSOR AND POST-PROCESSOR FOR SEQUENCE ASSEMBLY

Yuan-Hsiang Kuo, Chun-Shen Liu, Yu-Cheng Li, Yi-Chang Lu

Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan

ABSTRACT

In current DNA sequence assembly flows, a time-consuming

pre-processing routine is usually executed to remove low

quality data for smaller problem sizes and better final results.

The step usually takes 25%~90% of the total computation

time. To speed up the process, based on the characteristics

of DNA data, we propose to use digital processing hardware,

with parallel and pipeline capabilities, to accelerate the pre-

processing step. In our FPGA implementation, the

computing speed can be improved up to 2,700 folds. With

similar design concepts, we also implement a post-processor

to convert assembly results from color space to base space

whenever the step is necessary. Both designs enable faster

sequence assembly, which will greatly benefit the research in

genomics and related fields.

Index Terms—Bioinformatics, data pre-processing,

parallel processing, pipeline processing, digital integrated

circuits

1. INTRODUCTION

Over the past few years, reconstructing genome sequences

from experiments is an important research topic in

bioinformatics. Sequence alignment and sequence assembly

are widely applied methodologies. The process begins by

breaking DNA into a large amount of short fragments.

Fragments generated by different shotgun sequencing

technologies have different properties [1]. After shotgun

sequencing, sequence alignment reconstructs original DNA

sequence by mapping these fragments, or reads, to a

reference DNA sequence. On the contrast, sequence

assembly assembles reads without a reference. Due to the

lack of reference sequences, assembly methods usually lead

to uncertain results and cost much more time. Therefore, we

focus on the improvement of sequence assembly speed in

this paper.

As mentioned in [2], assembling reads into complete

genome meets two challenges: errors in reads, and repeats in

genome. Human mistakes during lab work or limitations in

technology may cause error bases in each short read, which

result in merging wrong reads. As for repeats, it is normal

features in genome, but it’s difficult to position these reads

correctly.

Eulerian path algorithm is developed to solve these

issues [3]. This graph-based approach breaks every read into

continuous k-mers which are represented as nodes in the

graph. Each k-mer is a substring of length k of the original

read and linked by edges of the graph. Assembly tools

search through k-mers and connect nodes to build directed

De Bruijn graph. Using this approach, assembly problem

corresponds to finding a path through all edges. In theory,

the complexity of Eulerian path problem is linear time [2].

In all of Eulerian path tools, Velvet [4] provides a mature

processing flow, therefore, we use it for our designs and

experiments.

In Velvet assembly flow (Fig. 1), the pre-processor

filters out low quality reads and, whenever necessary,

converts data format into the one that Velvet program can

recognize. Then Velvet program assembles reads to

contiguous sequences (Contig). If the original data are coded

in color-space, the post-processor is required to convert the

Velvet outputs to the final genome sequence. In our

experiments, we use different datasets to record the

computation time of each stage. Pre-processing usually takes

about 25% to 90% (38% and 22% in the cases below) of the

total time, which is proportional to the number of reads. As

to the post-processing time, it depends more on the contig

numbers generated after the Velvet stage.

Pre-Processor

Filter low

quality reads

Velvet

Assemble

 Reads

Post-Processor

Translate to

base space

Reads Contigs
(i) (ii) (iii)

Fig. 1 Velvet assembly flow

Read

No.

(i)

Pre-

Proc.

time

Read

No.

(ii)

Velvet

time

Contig

No.

(iii)

Post-

Proc.

time

TB

Paired
148M

4h

35m
53M

2h

48m
8.6k

4h

43m

TB

Single
74M

2h

13m
60M

3h

33m
23k

4h

18m

TB: MDR4_F3, MDR4_R3 Read length: 50

Table 1 Simulation result of velvet assembly flow

Table 1 shows two examples using high coverage color-

space Tuberculosis (TB) data. From the results, we find that

if we can greatly shorten the computation time of either

stage, the total assembly time will be reduced significantly,

1158978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

too. Because of the characteristics of reads, we propose to

use digital processing hardware, with parallel and pipeline

capabilities, to accelerate the pre-processing and post-

processing stages.

2. PRE-PROCESSOR ARCHITECTURE

The main function of the pre-processor is to filter out low

quality reads. Reads can be coded in either base-space or

color-space, depending on the technology that the next

generation sequencing (NGS) machine uses. Since some

assembly tools can only recognize data in base-space, the

pre-processor will convert color-space data into pseudo-

base-space data for later processing. In such a case, we will

need a post-processor to convert the data in pseudo-base-

space back to color-space.

In these data, every read consists of two major fields:

one is the sequence of base or color, and the other is the

quality value (QV) corresponding to each spot on the

sequence. A base sequence is coded in ATCG, while a color

sequence is coded with numbers obtained from two

neighboring bases as shown in Fig. 2 [5][6]. As to the QV, it

is calculated using the following equation:

1010logQ P , (1)

where Q is the quality value and P is the predicted

probability that the base/color call is incorrect.
A T C G

A 0 3 1 2

T 3 0 2 1

C 1 2 0 3

G 2 1 3 0

AGATTCGTTACGAA

T

Base-space

Color-space

Fig. 2 Color coding in SOLiD systems

Since low quality base data usually leads to

misalignment when building the De Bruijn graph. A pre-

processing routine is always used to removes low quality

reads through checking the quality values. The four major

filtering rules are summarized in Table 2.

Parameter Description

MQVmin Minimum acceptable median quality value

Lmin Minimum acceptable length of read

Nlq Upper bound number of low QV

Fbest Best read fraction

Table 2 Filtering rules of the pre-processor

Based on the rules above, we propose a pre-processor

hardware design as shown in Fig. 3. This design includes

two parts: a set of filter chips and a master chip. Filter chips

calculate the properties of fragments (such as read length,

median QV of every read), and remove bad reads. Filtering

operation for each read can be conducted in parallel, so we

separate all reads into several groups and assign the groups

to different filter chips. By doing so, filter chips process

reads in parallel thus decrease the execution time. The

master chip analyzes median QV data generated by filter

chips. The number of filter chips connected to the master

chip is of users’ choice. The number recommended is equal

to the longest read length based on the hardware architecture.

In conventional software approaches, programs process

the properties of reads sequentially, so it costs lots of time.

However, in our hardware design, all units in the pre-

processor are running simultaneously in a pipeline manner

as shown in Fig. 4. Therefore, the execution time can be

greatly reduced.

Length

Calculator

MQV

Calculator

Low QV

Calculator

Off-chip

memory

Fbest

Filter

Sort Unit

Filter

Filter Chip 0
Master

Chip

Filter

Chip 1

Filter

Chip 2

Filter Unit

Memory Unit

Memory

Controller

Fraction Filter

Unit

Fig. 3 Pre-processor architecture

Length

Filter

Calculating Read Length

Calculating MQV

Calculating number of Low QV

64 clock cycle

MQV
Length Cal.

MQV Cal.

Low QV Cal.

Filter Preparation for Filtering

Low QV

Calculating Read Length

Calculating MQV

Calculating number of Low QV

Preparing for filtering

Length

MQV

1 clock cycle

Fig. 4 Pipeline architecture of the pre-processor

Filter chip is composed of four units: Sort unit, Filter

unit, Memory unit and Fraction filter unit. Sort unit is in

charge of calculating the length of reads and the median of

QVs. Since the data of a read arrive in serial, the length is

determined when the last base/color comes in. As to the

median computation, the unit first sorts the QVs and pick the

numbers in the middle. In theory, the complexity of sorting

is O(NlogN). However, because of the parallel property,

hardware can sort reads in linear time. The Sort unit can

figure out the median QV and read length as soon as the end

of a read comes in. Then the two numbers are transmitted to

the Filter unit and the master chip.

The Filter unit has two main functions. First, reads

failed to comply with the three filtering rules, MQVmin, Lmin,

and Nlq, will be detected by comparators and counters in the

unit. Second, for color-space inputs, the Filter unit coverts

data into pseudo-base-space by removing the first two color

calls and mapping {0,1,2,3} directly to {A,C,T,G} (instead

of decoding the number to one of its four possible sets).

Furthermore, a read could be a single segment or paired

segments. For paired reads, there are two different forms:

paired-end (F5 and R3) reads and mate-paired (F3 and R3)

reads. Since some of the assembly tools, like Velvet,

recognize paired-end data only, the Filter unit must change

mate-paired data into paired-end reads by reversing the F3

sequences.

The Memory unit and Fraction filter unit are designed

for the Fbest criterion in Table 2. If we want to choose the

best part of the reads, the median QVs of all reads should be

counted by the master chip first. For this reason, reads

1159

should be stored on off-chip memory temporarily until the

master chip finishes counting. Then Fraction filter unit

removes more reads according to the statistics. Then the

reads are ready for the assembly tools.

Master Chip

MQV Input Mux

ti

Processing
Unit

Filter
Chip 0

Filter
Chip 1

Filter
Chip 2

Filter
Chip 61

Filter
Chip 62

Filter
Chip 63

……

ti+1 ti+2 ti+61 ti+62 ti+63

MQVout

CMQV

Counting MQV (CMQV)

Cycle 64 Cycle 65 Cycle 66 Cycle 67

64 cycle

MQVout

Filter Chip 0

MQVout

MQVout

Counting MQV (CMQV)

Counting MQV (CMQV)

Counting MQV (CMQV)

CMQV

CMQV

MQVout

MQVout

CMQV

Filter Chip 1

Filter Chip 2

Filter Chip 3

...

Fig. 5 Configuration and timing schedule of the master chip

Fig. 5 shows how the master chip functions. Master chip

consists of counters which record the histogram of quality

values reported by N filters (N=64 in Fig. 5). Each filter chip

outputs its median QV every N clock cycles. In our design,

the output timing is shifted by one clock in each filter, so the

master chip can receive one median QV at a time. With this

technique, the filter chips will not generate outputs at the

same time, which greatly reduces the number of adders in

the master chip. Another advantage of this design is that the

master chip architecture is scalable. If the maximum length

of the reads is increased to 128, we can have the master chip

connected to 128 filter chips. Because of the pipeline

architecture, the computation time remains the same, and it

is proportional to the number of total reads. We can further

improve the computing speed by cascading master chips

(and adders).

3. POST-PROCESSOR ARCHITECTURE

If we convert color-space data into pseudo-base-space data

for Velvet inputs, we will need the post-processor to convert

the Velvet outputs from pseudo-base-space to the final

genome sequence. Mapping pseudo-base-space data to

color-space data is straight forward. However, color-space

outputs cannot be translated to a genome sequence without

the information of the first nucleotide. Therefore, most post-

processing routines have to trace all reads and align them all

over again according to the position information provided by

Velvet. Since there are numerous reads, the computing time

is very long. Besides, those algorithms ignore the fact that

Velvet has provided an assembled sequence in pseudo-base-

space. Therefore, by sacrificing a little bit accuracy, we

purpose a faster method as shown in Fig. 6.

231200122201323213320122001033030200110003000AGGTCCTT GAATTCCG

Front-end Back-end

Fig. 6 Concept of post-processor

We first map the Velvet sequence results from pseudo-

base-space to color-space. Then we align only first M reads

in the front-end part to determine the first nucleotide of the

assembled color-space sequence. With this information, we

can change the assembled sequence from color space to base

space. It is not necessary to align all the reads, so the

execution time will decrease a lot. Using similar concepts,

the reads in the back-end are also aligned to extend the

length of the assembled sequence. According to our

experiments, the accuracy of the results improves as the

number of M increases. In our design, we choose M=10, and

the accuracy is 92%. If we increase M to 20, the accuracy is

above 95%.

Fig. 7 shows the architecture of our post-processor. The

Post-filter unit receives assembled sequences data and their

corresponding reads from Velvet. Based on the position

information, the Post-filter unit uses two sorters to find the

first and last ten reads for alignment purposes. In the

filtering process, assembled color-space sequences are store

in the Memory unit which includes two SRAMs. Then the

Alignment unit decodes output reads found by the Post-filter

unit and merges them with the assembled sequences from the

SRAMs. As Fig. 8 shows, Post-filter unit and Alignment unit

work in pipeline to improve the timing, where two SRAMs

are used to make sure the data are stored and updated

efficiently.

Post-Processor

Post-Filter Unit

Input

Controller

Front-end

Sorter

Back-end

Sorter

Align Unit

Base Space

Decoder

Front-end

Aligner

Back-end

Aligner

Memory Unit

SRAM

SRAM

Fig. 7 Post-processor architecture

Filtering AlignmentIdle

Filtering AlignmentIdle

Filtering Idle

Contig 0

Contig 1

Contig 2

Fig. 8 Pipeline of post-processor

4. RESULTS

We implement our pre-processor chip with TSMC 90 nm

technology. The filter chip and master chip are designed so

that the master chip can communicate with 16 filter chips,

where the maximal number of the connected filter chips is

limited by IO pads. The specifications of the chipset are

shown in Table 3.

Chip Filter Chip Master Chip

Clock frequency 100 MHz

Chip Area 1.796 mm2 2.265 mm2

PAD 123 145

Power 30.89 mW 21.76 mW

Table 3 Specifications of the pre-processor chipset

1160

 Software Hardware

Proc. Time 4hr35min 5.92sec

Table 4 Execution time of pre-processor in software and hardware

without data transmission time

Table 4 shows the execution time of the pre-processing

step using a real TB genome dataset as an example (148M

reads, Tuberculosis DNA 138000463_20110104_2_MDR4).

From Table 4, we can see that the computation speed of the

hardware design is much faster the software version. We

also design a larger pre-processor which integrates 4 filter

chips and 1 master chip into a single chip, which could

further improve the processing speed but at a higher

manufacturing cost.

In addition to the ASIC design summarized in Table 3

and Table 4, we also implement our pre-processor on FPGA

boards. We choose to use two DE4 boards because one DE4

board won’t be able to store all the data required for our TB

test case. Table 5 shows the execution time as different I/O

interfaces and numbers of DE4 FPGA boards are used.

Because the pre-processors on FPGAs start to transmit

processed data while processing the incoming data, the

transmission time between FPGAs and the CPU will not

affect the total execution time until the processing time is

shorter than the transmission time bounded by the channel

bandwidth.

 SATA 3.0 PCI-E x8

of

DE4

without

faction

filter

with

fraction

filter

without

faction

filter

with

fraction

filter

2 47.36s 94.72s 47.36s 94.72s

4 23.68s 47.36s 27.68s 47.36s

8 23s 23.68s 27.68s 27.68s

16 23s 23s 27.68s 27.68s

Table 5 Execution time of pre-processing with different numbers

of FPGA boards and I/O interfaces

We also implement a post-processor chip with TSMC

90 nm technology. The specifications of chips are shown in

Table 6. We also compare the hardware processing time

with the software version in Table 7. Although there is a

trade-off between the speed and accuracy (8% in this case)

when implementing our hardware version as explained in

Section 3, the speed improvement is more than 30,000 times.

Chip Post-Processor

Clock frequency 100 MHz

Chip Area 1.416 mm2

PAD 103

Power 50.7 mW

Table 6 Post-processor implementation results

 Software Hardware

Proc. time 4hr43min 0.49sec

Table 7 Execution time of post-processor in software and hardware

5. CONCLUSION

We propose to use pre-processor and post-processor

hardware to accelerate DNA sequence assembly processes in

this paper. The design of the pre-processor and post-

processor adopts pipeline techniques to take the full

advantages of using hardware. Compared to conventional

software approaches, the pre-processor increases the

computation speed by over 2,700 times. Moreover, the

architecture of the pre-processor is scalable. We also

propose a new post-processing algorithm to improve the

efficiency and the computation speed with a small trade-off

in accuracy. Both designs accelerate sequence assembly

processes, which will make sequence assembly much faster

than they used to be.

6. ACKNOWLEDGEMENT

This work is partially supported by National Science

Council, Taiwan, under Grant number NSC 99-2221-E-002-

216-MY3. The authors would like to thank Dr. Ker-Chau Li,

Dr. Shin-Sheng Yuan, and Dr. Hsuan-Yu Chen, all with

Institute of Statistical Science, Academia Sinica, for

providing the NGS data and valuable comments.

7. REFERENCES

[1] M. L. Metzker, "Sequencing technologies - the next

generation," Nat Rev Genet, vol. 11, pp. 31-46, 2010.

[2] M. Pop, S. L. Salzberg, and M. Shumway, "Genome

sequence assembly: algorithms and issues," Computer, vol.

35, pp. 47-54, 2002.

[3] P. A. Pevzner, H. Tang, and M. S. Waterman, "An

Eulerian path approach to DNA fragment assembly,"

Proceedings of the National Academy of Sciences, vol. 98,

pp. 9748-9753, August 14, 2001 2001.

[4] D. R. Zerbino and E. Birney, "Velvet: Algorithms for de

novo short read assembly using de Bruijn graphs," Genome

Research, vol. 18, pp. 821-829, May 1, 2008 2008.

[5] K. J. McKernan, et. al., "Sequence and structural

variation in a human genome uncovered by short-read,

massively parallel ligation sequencing using two base

encoding," Genome Research, June 22, 2009 2009.

[6] H. Breu, "A theoretical understanding of 2 base color

codes and its application to annotation, error detection, and

error correction," White Paper SOLiD System Applied

Biosystems, 2010. Available:

http://www3.appliedbiosystems.com/cms/groups/mcb_marke

ting/documents/generaldocuments/cms_058265.pdf

1161

