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ABSTRACT 

 

In current DNA sequence assembly flows, a time-consuming 

pre-processing routine is usually executed to remove low 

quality data for smaller problem sizes and better final results. 

The step usually takes 25%~90% of the total computation 

time. To speed up the process, based on the characteristics 

of DNA data, we propose to use digital processing hardware, 

with parallel and pipeline capabilities, to accelerate the pre-

processing step. In our FPGA implementation, the 

computing speed can be improved up to 2,700 folds. With 

similar design concepts, we also implement a post-processor 

to convert assembly results from color space to base space 

whenever the step is necessary. Both designs enable faster 

sequence assembly, which will greatly benefit the research in 

genomics and related fields. 

 

Index Terms—Bioinformatics, data pre-processing, 

parallel processing, pipeline processing, digital integrated 

circuits 

 

1. INTRODUCTION 

 

Over the past few years, reconstructing genome sequences 

from experiments is an important research topic in 

bioinformatics. Sequence alignment and sequence assembly 

are widely applied methodologies. The process begins by 

breaking DNA into a large amount of short fragments. 

Fragments generated by different shotgun sequencing 

technologies have different properties [1]. After shotgun 

sequencing, sequence alignment reconstructs original DNA 

sequence by mapping these fragments, or reads, to a 

reference DNA sequence. On the contrast, sequence 

assembly assembles reads without a reference. Due to the 

lack of reference sequences, assembly methods usually lead 

to uncertain results and cost much more time. Therefore, we 

focus on the improvement of sequence assembly speed in 

this paper. 

As mentioned in [2], assembling reads into complete 

genome meets two challenges: errors in reads, and repeats in 

genome. Human mistakes during lab work or limitations in 

technology may cause error bases in each short read, which 

result in merging wrong reads. As for repeats, it is normal 

features in genome, but it’s difficult to position these reads 

correctly. 

Eulerian path algorithm is developed to solve these 

issues [3]. This graph-based approach breaks every read into 

continuous k-mers which are represented as nodes in the 

graph. Each k-mer is a substring of length k of the original 

read and linked by edges of the graph. Assembly tools 

search through k-mers and connect nodes to build directed 

De Bruijn graph. Using this approach, assembly problem 

corresponds to finding a path through all edges. In theory, 

the complexity of Eulerian path problem is linear time [2]. 

In all of Eulerian path tools, Velvet [4] provides a mature 

processing flow, therefore, we use it for our designs and 

experiments.  

In Velvet assembly flow (Fig. 1), the pre-processor 

filters out low quality reads and, whenever necessary, 

converts data format into the one that Velvet program can 

recognize. Then Velvet program assembles reads to 

contiguous sequences (Contig). If the original data are coded 

in color-space, the post-processor is required to convert the 

Velvet outputs to the final genome sequence. In our 

experiments, we use different datasets to record the 

computation time of each stage. Pre-processing usually takes 

about 25% to 90% (38% and 22% in the cases below) of the 

total time, which is proportional to the number of reads. As 

to the post-processing time, it depends more on the contig 

numbers generated after the Velvet stage.  
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Fig. 1 Velvet assembly flow 
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TB:  MDR4_F3, MDR4_R3 Read length: 50 

Table 1 Simulation result of velvet assembly flow 

Table 1 shows two examples using high coverage color-

space Tuberculosis (TB) data. From the results, we find that 

if we can greatly shorten the computation time of either 

stage, the total assembly time will be reduced significantly, 
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too. Because of the characteristics of reads, we propose to 

use digital processing hardware, with parallel and pipeline 

capabilities, to accelerate the pre-processing and post-

processing stages.  

 

2. PRE-PROCESSOR ARCHITECTURE 

 

The main function of the pre-processor is to filter out low 

quality reads. Reads can be coded in either base-space or 

color-space, depending on the technology that the next 

generation sequencing (NGS) machine uses. Since some 

assembly tools can only recognize data in base-space, the 

pre-processor will convert color-space data into pseudo-

base-space data for later processing. In such a case, we will 

need a post-processor to convert the data in pseudo-base-

space back to color-space. 

In these data, every read consists of two major fields: 

one is the sequence of base or color, and the other is the 

quality value (QV) corresponding to each spot on the 

sequence. A base sequence is coded in ATCG, while a color 

sequence is coded with numbers obtained from two 

neighboring bases as shown in Fig. 2 [5][6]. As to the QV, it 

is calculated using the following equation: 

1010logQ P  ,                                 (1) 

where Q is the quality value and P is the predicted 

probability that the base/color call is incorrect. 
A T C G

A 0 3 1 2

T 3 0 2 1

C 1 2 0 3

G 2 1 3 0

AGATTCGTTACGAA

T

Base-space

Color-space

 
Fig. 2 Color coding in SOLiD systems 

Since low quality base data usually leads to 

misalignment when building the De Bruijn graph. A pre-

processing routine is always used to removes low quality 

reads through checking the quality values. The four major 

filtering rules are summarized in Table 2.  
 

Parameter Description 

MQVmin Minimum acceptable median quality value 

Lmin Minimum acceptable length of read 

Nlq Upper bound number of low QV 

Fbest Best read fraction 

Table 2 Filtering rules of the pre-processor 

 

Based on the rules above, we propose a pre-processor 

hardware design as shown in Fig. 3. This design includes 

two parts: a set of filter chips and a master chip. Filter chips 

calculate the properties of fragments (such as read length, 

median QV of every read), and remove bad reads. Filtering 

operation for each read can be conducted in parallel, so we 

separate all reads into several groups and assign the groups 

to different filter chips. By doing so, filter chips process 

reads in parallel thus decrease the execution time. The 

master chip analyzes median QV data generated by filter 

chips. The number of filter chips connected to the master 

chip is of users’ choice. The number recommended is equal 

to the longest read length based on the hardware architecture. 

In conventional software approaches, programs process 

the properties of reads sequentially, so it costs lots of time. 

However, in our hardware design, all units in the pre-

processor are running simultaneously in a pipeline manner 

as shown in Fig. 4. Therefore, the execution time can be 

greatly reduced. 
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Fig. 3 Pre-processor architecture 
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Fig. 4 Pipeline architecture of the pre-processor 

 

Filter chip is composed of four units: Sort unit, Filter 

unit, Memory unit and Fraction filter unit. Sort unit is in 

charge of calculating the length of reads and the median of 

QVs. Since the data of a read arrive in serial, the length is 

determined when the last base/color comes in. As to the 

median computation, the unit first sorts the QVs and pick the 

numbers in the middle. In theory, the complexity of sorting 

is O(NlogN). However, because of the parallel property, 

hardware can sort reads in linear time. The Sort unit can 

figure out the median QV and read length as soon as the end 

of a read comes in. Then the two numbers are transmitted to 

the Filter unit and the master chip. 

The Filter unit has two main functions. First, reads 

failed to comply with the three filtering rules, MQVmin, Lmin, 

and Nlq, will be detected by comparators and counters in the 

unit. Second, for color-space inputs, the Filter unit coverts 

data into pseudo-base-space by removing the first two color 

calls and mapping {0,1,2,3} directly to {A,C,T,G} (instead 

of decoding the number to one of its four possible sets). 

Furthermore, a read could be a single segment or paired 

segments. For paired reads, there are two different forms: 

paired-end (F5 and R3) reads and mate-paired (F3 and R3) 

reads. Since some of the assembly tools, like Velvet, 

recognize paired-end data only, the Filter unit must change 

mate-paired data into paired-end reads by reversing the F3 

sequences.  

The Memory unit and Fraction filter unit are designed 

for the Fbest criterion in Table 2. If we want to choose the 

best part of the reads, the median QVs of all reads should be 

counted by the master chip first. For this reason, reads 
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should be stored on off-chip memory temporarily until the 

master chip finishes counting. Then Fraction filter unit 

removes more reads according to the statistics. Then the 

reads are ready for the assembly tools. 
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Fig. 5 Configuration and timing schedule of the master chip 

 

Fig. 5 shows how the master chip functions. Master chip 

consists of counters which record the histogram of quality 

values reported by N filters (N=64 in Fig. 5). Each filter chip 

outputs its median QV every N clock cycles. In our design, 

the output timing is shifted by one clock in each filter, so the 

master chip can receive one median QV at a time. With this 

technique, the filter chips will not generate outputs at the 

same time, which greatly reduces the number of adders in 

the master chip. Another advantage of this design is that the 

master chip architecture is scalable. If the maximum length 

of the reads is increased to 128, we can have the master chip 

connected to 128 filter chips. Because of the pipeline 

architecture, the computation time remains the same, and it 

is proportional to the number of total reads. We can further 

improve the computing speed by cascading master chips 

(and adders). 

 

3. POST-PROCESSOR ARCHITECTURE 

 

If we convert color-space data into pseudo-base-space data 

for Velvet inputs, we will need the post-processor to convert 

the Velvet outputs from pseudo-base-space to the final 

genome sequence. Mapping pseudo-base-space data to 

color-space data is straight forward. However, color-space 

outputs cannot be translated to a genome sequence without 

the information of the first nucleotide. Therefore, most post-

processing routines have to trace all reads and align them all 

over again according to the position information provided by 

Velvet. Since there are numerous reads, the computing time 

is very long. Besides, those algorithms ignore the fact that 

Velvet has provided an assembled sequence in pseudo-base-

space. Therefore, by sacrificing a little bit accuracy, we 

purpose a faster method as shown in Fig. 6.  

231200122201323213320122001033030200110003000AGGTCCTT GAATTCCG

Front-end Back-end

 
Fig. 6 Concept of post-processor 

We first map the Velvet sequence results from pseudo-

base-space to color-space. Then we align only first M reads 

in the front-end part to determine the first nucleotide of the 

assembled color-space sequence. With this information, we 

can change the assembled sequence from color space to base 

space. It is not necessary to align all the reads, so the 

execution time will decrease a lot.  Using similar concepts, 

the reads in the back-end are also aligned to extend the 

length of the assembled sequence. According to our 

experiments, the accuracy of the results improves as the 

number of M increases. In our design, we choose M=10, and 

the accuracy is 92%. If we increase M to 20, the accuracy is 

above 95%. 

Fig. 7 shows the architecture of our post-processor. The 

Post-filter unit receives assembled sequences data and their 

corresponding reads from Velvet. Based on the position 

information, the Post-filter unit uses two sorters to find the 

first and last ten reads for alignment purposes. In the 

filtering process, assembled color-space sequences are store 

in the Memory unit which includes two SRAMs. Then the 

Alignment unit decodes output reads found by the Post-filter 

unit and merges them with the assembled sequences from the 

SRAMs. As Fig. 8 shows, Post-filter unit and Alignment unit 

work in pipeline to improve the timing, where two SRAMs 

are used to make sure the data are stored and updated 

efficiently. 
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Fig. 7 Post-processor architecture 
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Fig. 8 Pipeline of post-processor 

 

4. RESULTS 

 

We implement our pre-processor chip with TSMC 90 nm 

technology. The filter chip and master chip are designed so 

that the master chip can communicate with 16 filter chips, 

where the maximal number of the connected filter chips is 

limited by IO pads. The specifications of the chipset are 

shown in Table 3. 

 
Chip Filter Chip Master Chip 

Clock frequency 100 MHz 

Chip Area 1.796 mm2 2.265 mm2 

PAD 123 145 

Power 30.89 mW 21.76 mW 

Table 3 Specifications of the pre-processor chipset 
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 Software Hardware 

Proc. Time 4hr35min 5.92sec 

Table 4 Execution time of pre-processor in software and hardware 

without data transmission time 

 

Table 4 shows the execution time of the pre-processing 

step using a real TB genome dataset as an example (148M 

reads, Tuberculosis DNA 138000463_20110104_2_MDR4). 

From Table 4, we can see that the computation speed of the 

hardware design is much faster the software version. We 

also design a larger pre-processor which integrates 4 filter 

chips and 1 master chip into a single chip, which could 

further improve the processing speed but at a higher 

manufacturing cost. 

In addition to the ASIC design summarized in Table 3 

and Table 4, we also implement our pre-processor on FPGA 

boards. We choose to use two DE4 boards because one DE4 

board won’t be able to store all the data required for our TB 

test case. Table 5 shows the execution time as different I/O 

interfaces and numbers of DE4 FPGA boards are used. 

Because the pre-processors on FPGAs start to transmit 

processed data while processing the incoming data, the 

transmission time between FPGAs and the CPU will not 

affect the total execution time until the processing time is 

shorter than the transmission time bounded by the channel 

bandwidth.  

 
 SATA 3.0 PCI-E x8 

# of 

DE4 

without 

faction 

filter 

with 

fraction 

filter 

without 

faction 

filter 

with 

fraction 

filter 

2 47.36s 94.72s 47.36s 94.72s 

4 23.68s 47.36s 27.68s 47.36s 

8 23s 23.68s 27.68s 27.68s 

16 23s 23s 27.68s 27.68s 

Table 5 Execution time of pre-processing with different numbers 

of FPGA boards and I/O interfaces 

 

We also implement a post-processor chip with TSMC 

90 nm technology. The specifications of chips are shown in 

Table 6. We also compare the hardware processing time 

with the software version in Table 7. Although there is a 

trade-off between the speed and accuracy (8% in this case) 

when implementing our hardware version as explained in 

Section 3, the speed improvement is more than 30,000 times. 

 
Chip Post-Processor 

Clock frequency 100 MHz 

Chip Area 1.416 mm2 

PAD 103 

Power 50.7 mW 

Table 6 Post-processor implementation results 

 

 Software Hardware 

Proc. time 4hr43min 0.49sec 

Table 7 Execution time of post-processor in software and hardware 

 

5. CONCLUSION 

 

We propose to use pre-processor and post-processor 

hardware to accelerate DNA sequence assembly processes in 

this paper. The design of the pre-processor and post-

processor adopts pipeline techniques to take the full 

advantages of using hardware. Compared to conventional 

software approaches, the pre-processor increases the 

computation speed by over 2,700 times. Moreover, the 

architecture of the pre-processor is scalable. We also 

propose a new post-processing algorithm to improve the 

efficiency and the computation speed with a small trade-off 

in accuracy. Both designs accelerate sequence assembly 

processes, which will make sequence assembly much faster 

than they used to be. 

 

6. ACKNOWLEDGEMENT 

 

This work is partially supported by National Science 

Council, Taiwan, under Grant number NSC 99-2221-E-002-

216-MY3. The authors would like to thank Dr. Ker-Chau Li, 

Dr. Shin-Sheng Yuan, and Dr. Hsuan-Yu Chen, all with 

Institute of Statistical Science, Academia Sinica, for 

providing the NGS data and valuable comments. 

 

7. REFERENCES 

 

[1] M. L. Metzker, "Sequencing technologies - the next 

generation," Nat Rev Genet, vol. 11, pp. 31-46, 2010. 

[2] M. Pop, S. L. Salzberg, and M. Shumway, "Genome 

sequence assembly: algorithms and issues," Computer, vol. 

35, pp. 47-54, 2002. 

[3] P. A. Pevzner, H. Tang, and M. S. Waterman, "An 

Eulerian path approach to DNA fragment assembly," 

Proceedings of the National Academy of Sciences, vol. 98, 

pp. 9748-9753, August 14, 2001 2001. 

[4] D. R. Zerbino and E. Birney, "Velvet: Algorithms for de 

novo short read assembly using de Bruijn graphs," Genome 

Research, vol. 18, pp. 821-829, May 1, 2008 2008. 

[5] K. J. McKernan, et. al., "Sequence and structural 

variation in a human genome uncovered by short-read, 

massively parallel ligation sequencing using two base 

encoding," Genome Research, June 22, 2009 2009. 

[6] H. Breu, "A theoretical understanding of 2 base color 

codes and its application to annotation, error detection, and 

error correction," White Paper SOLiD System Applied 

Biosystems, 2010. Available:  

http://www3.appliedbiosystems.com/cms/groups/mcb_marke

ting/documents/generaldocuments/cms_058265.pdf 

 

1161


