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ABSTRACT

The paper presents a variable selection method for biomarker
discovery in proteomics. More specifically, it finds the most
adequate variables among a given set in order to discrimi-
nate between two groups (healthy and pathological). This ap-
proach is developped within a Bayesian framework and relies
on an optimal strategy that results in the choice of the most
a posteriori probable model. The calculation of the poste-
rior probabilities requires marginalization of unknown param-
eters. It is the main difficulty and a contribution of the paper
is to provide a closed-form expression. The originality of the
work is twofold: (1) we relax the standard hypothesis of lin-
ear regression models and (2) we present a multivariate test
which directly accommodates possible correlations between
the biomarkers. The effectiveness of the method is assessed
through a simulated study and shows results in accordance
with the theoritical optimality.

Index Terms — Model and variable selection, Bayesian
approach, Bayes factor, Gaussian mixture, proteomics.

1. INTRODUCTION

Proteomics is an expanding domain that consists in the large-
scale study of proteins. It offers a promising tool since it in-
cludes information about biological and cell system function-
ing [1, 2]. Practically, some proteins are differently expressed
according to the biological state (healthy: H, pathological:
P) and they are referred to as biomarkers. So, proteomic
is highly considered in the diagnostic of diseases like can-
cer [3]. However, the proteins have small and variable con-
centrations which complicates the study and requires high-
tech measurement systems. To this end, Liquid Chromatogra-
phy and Mass Spectrometry (LC-MS) [4] give spectra includ-
ing peaks related to the nature and concentration of proteins.
The biomarker discovery can be directly based on these spec-
tra [3, 4] or can be based on estimated concentrations [5, 6]
computed from these spectra. The study can be non paramet-
ric [5] or parametric, e.g. in a Bayesian framework [6]. Here,
the study relies on protein concentrations and is conducted in
a parametric Bayesian scheme.

Discovery methods can be classified in two categories.
A first class consists in introducing a predictive model, such

as the logistic regression model, that relates explicative vari-
ables (here concentrations) and explained variables (biolog-
ical state). Then, the variable selection is performed by
searching for the combination of proteins that minimizes a
criterion that penalizes the complexity, such as the Bayesian
Information Criterion [7] or the Akaike Information Crite-
rion [8]. However, the computational complexity is relatively
high since 2P models must be compared for P biological
variables. To alleviate this complexity, [9] proposes a Gibbs
sampling pre-selection of the biological variables. An alter-
native is to compute the maximum likelihood estimates of the
regressors by enforcing parsimony such as the well-known
lasso or elastic net algorithms [10, 11]. The second class is
based on differential analysis [12] whose principle is gener-
ally to carry out univariate tests such as the Student test for
each protein. The main difficulty is that, due to the multiple
tests, it is necessary to control the family wise error rate or
the less conservative false discovery rate [13]. However, such
techniques do not account for possible correlations between
the biomarkers when performing the selection.

The originality of the proposed work compared to the
above-mentioned approaches is twofold. On the one hand,
we relax the hypothesis of a linear regression model which
may be quite restrictive. On the other hand, we present a
multivariate test which directly accommodates possible cor-
relations between the biomarkers. The problem is modeled
within a hierarchical Bayesian framework: based on the risk
(mean loss), an optimal decision-maker is designed for model
selection that leads to select the most a posteriori probable
model. When using Bayesian approaches, a difficulty is the
choice of the prior probabilities for the unknown parameters.
Here, we propose a relevant choice which allows to obtain a
closed-form expression of the posterior probability. Thus the
approach is attractive from a computational point of view.

The rest of the paper is organized as follows. Section 2
describes the considered model and the variable selection
method. Numerical results are provided in section 3. Sec-
tion 4 gives conclusions and perspectives for future work.

2. VARIABLE SELECTION

Let us note P the number of considered proteins and x ∈
R

P the collection of concentrations. A discriminant / non-
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discriminant protein is labeled by + /− and there are 2P con-
figurations referred to as δ ∈ {+,−}P . The vector x

+ / x−

(sizes P+ / P−) respectively stands for discriminant / non-
discriminant proteins (we have P = P+ + P−). As long as
the biological state is concerned, it is denoted by b and takes
two values, H and P for Healthy and Pathological.

Regarding observations, N is the number of observed in-
dividuals and (xn, bn) is n-th observed concentrations and
state. Let us denote X the matrix of concentrations and b

the vector of biological states. IP and IH are respectively the
subsets of indices for pathological and healthy individuals.

For each individual n, the state bn is described by a
Bernoulli variable B with parameter p. Regarding the pro-
tein concentrations, they are described by normal distri-
butions. Specifically, for discriminant ones, conditionally
on state bn, the concentration vector x

+
n is modeled by a

multivariate normal distribution with mean and precision
(mH,ΓH) and (mP ,ΓP) for healthy and pathological re-
spectively. For a non discriminant protein, x

−
n is modeled

by a unique multivariate normal distribution with common
parameters (mC ,ΓC). Moreover, it is assumed that x

+ and
x
− are uncorrelated. Regrading unknown parameters, we

have θ = [mP ,ΓP ,mH,ΓH,mC ,ΓC , p].
To build an optimal decision-maker, a 0 / 1 loss is con-

sidered: it assigns a null (resp. unitary) loss to any correct
(resp. wrong) decision. The risk is the mean loss and an im-
portant point is that it is the mean over the 2P models, the
data (concentrations and state) and unknown parameters. The
optimal decision-maker is defined as the risk minimizer and it
is known that it selects the most a posteriori probable model.

2.1. Posteriori probabilities calculation

For each candidate δ, the posterior probability P∆|X ,B(δ|x,b)
is required. By the Bayes rule:

P∆|X ,B(δ|x,b) ∝ fX ,B|∆(x,b|δ)P(∆ = δ) (2)

and the keystone is the likelihood fX ,B|∆(x,b|δ) also re-
ferred to as the evidence. Thanks to (conditional) uncorrela-
tion between x

+ and x
− and independance between individ-

uals, the (complete) likelihood doubly factorizes and yields
Eq. (1). Its three first factors involve multivariate normal dis-
tributions, so, the following explanation is limited to the first
one. Reformulating the exponential argument yields:

∏

n∈IP

N (x+
n ;m+

P ,Γ+
P) = (2π)−PNP/2|ΓP |

N/2

exp

[

−
NP

2
tr

(

Γ
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P

[
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+
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P − m
+
P)(x̄+

P − m
+
P)t

])

]

where x̄
+
P and R̄

+
P are the empirical mean and covariance.

The fourth factor is common to all configurations and the
last one is the prior distribution for unknown parameters. The
latter is important for two reasons: (1) it models available in-
formation and (2) its choice impacts the calculation feasabil-
ity. Using the conjugation principle, we set a separable prior:

πΘ(θ|∆) = πP(m+
P ,Γ+

P )πH(m+
H,Γ+

H)πC(m−
C ,Γ−

C )πp(p)

and Normal-Wishart densities (see Appendix) for πP , πH and
πH and Beta density for πp.

For convenience in the forthcoming calculation, we de-
duce the posterior distribution for θ, fΘ|X ,b(θ|x, b), which
is proportional to the integrand in (1). Thus, for (m⋆

×,Γ⋆
×)

with × ∈ {P ,H, C} and ⋆ ∈ {+,−}, the posterior distribu-
tion is also the Normal-Wishart with parameters:
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where “pst” stands for posterior. Regarding p, the poste-
rior distribution is a Beta density with parameters: αpst =
NP + α, βpst = NH + β. Then, rearranging different factors,
calculation of the integral in (1) is possible and yields:

fX ,B|∆(x,b|δ) ∝
K+pst

P

K+pri
P

K+pst
H

K+pri
H

K−pst
C

K−pri
C

(3)

where K is the normalizing constant of the Normal-Wishart
(given in Appendix),“pri” stands for prior. As a consequence,
the probabilities are very easy to compute despite the com-
plexity of the problem. Besides, given that all candidate mod-
els are equiprobable, from Eq. (2) we can deduce the posterior
probability for the 2P models. The selected model is the one
which maximizes this probability.

2.2. Hyperparameter choice

The probability (3) depends on the parameters of the Normal-
Wishart distributions (ν×, η×, µ×,Λ×) for × ∈ {P ,H, C}
referred to as hyperparameters. In a non-informative case,
the parameters (ν×, η×, µ×,Λ−1

× ) tends to (0, 0, 0, 0) and the
proportionality coefficient in (3) has an indeterminated form.

To tune these parameters we propose to resort to poorly
informative priors based on real-life orders of magnitudes for
involved variables (e.g. µg per ml). To this end, we establish
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a relation between prior mean and covariance for (m×, Γ×)
and the hyperparameters:

E(Γ×) = ν×Λ×

E(m×) = µ×

V (m×) = Λ−1
× / [η×(ν× − P − 1)]

cov(Γi,j
× , Γk,l

× ) = ν×(Λil
×Λjk

× + Λik
×Λjl

×)

where superscript i, j denotes the (i, j) entry of matrices. So,
accounting for real-world orders of magnitudes of m× and
Γ×, the prior parameters (ν×, η×, µ×,Λ×) can be calculated
and substituted in the probability (3).

3. RESULTS

We performed several simulations to illustrate the method
performances for selection of biomarkers (discriminant pro-
teins). In the first place, we focus on the univariate problem
wherein a given protein is selected as discriminant or not, then
∆ = {+,−}. This simpler issue allows to precisely quantify
the influence on the selection of the difference between the
empirical statistics of the concentrations for the healthy and
the pathological subsets of individuals. The first considered
scenario consists in imposing the same variance for both the
healthy and pathological populations. Then, the mean of the
concentration of the healthy individuals is assumed equal to
10µg whereas the one of the pathological population is made
to vary between 0 and 20µg.

In Figure 1-top, the posterior probability of the model
∆ = + is presented as a function of the mean difference for
several values of the variance (20, 50, 100). For small empir-
ical variance, the posterior probability of the model ∆ = + is
approximately 1 even for low values of the mean difference.
Conversely, for high empirical variance the model ∆ = + is
selected only for large value of mean difference. We conclude
that, the higher the variance, the larger must be the mean dif-
ference for the protein to be validated as a biomarker.

In the second scenario, both the empirical mean of the
healthy and pathological populations are set to 50µg and the
variance of the pathological population equals to 20, while the
variance of the healthy ones takes different values between 20
and 200. Results are shown in Figure 1-bottom. We note that
the protein is selected as biomarker only for large values of
variances differences, otherwise the protein is decided to be
non discriminant.

In the next, performances of the model selection method
are studied. For fixed number of proteins P , we consider
a set of true models with a number of biomarker varying
from 0 to P . For each true model, Nr = 10000 realisa-
tions are simulated as a set of data given by individual state
and proteins concentrations according to the following de-
scription. The individual state is governed by the Bernoulli
variable. For discriminant proteins, the concentrations are
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Fig. 1. top: Log-posterior-probability of discriminant protein as a
function of mean difference for several variances. bottom: posterior-
probability of discriminant protein as a function of healthy variance
for a fixed pathological variance.

distributed as N (x+
n ;m+

H,Γ+
H) or N (x+

n ;m+
P ,Γ+

P) depend-
ing on the simulated individual state. For non discriminant
ones they are given by N (x−

n ;m−
C ,Γ−

C ). The parameters
(m⋆

×,Γ⋆
×) where × ∈ {P ,H, C} and ⋆ ∈ {+,−} are

distributed as NW(ν×, η×, µ×,Λ×), where hyperparam-
eters (ν×, η×, µ×,Λ×) are calculated as explained in Sec-
tion 2.2. In the following we consider P = 4 proteins and
N = 1000 individuals, with E(m×) = 10, V (m×) = 200,
E(Γ×) = 35 and V (Γ×) = 200.

Then, for each data set, the posterior probability is cal-
culated for each configurations and the most probable one is
selected. Performance are the evaluated by the Bayesian risk,
that is to say the Mean Selection Error Rate (MSER) denoted
τ and given by:

τ =

P
∑

i=0

SERi

where SERi is the Selection Error Rate given by SERi =
Qiωi/Nr, with Qi is the number of realisations where the se-
lected model is different from the true one and ωi is the pro-
portion of models with i biomarkers. Results are compared
with the Student’s t-test based on comparison of the means of
the proteins concentrations between the two cohorts H and P .
When the hypothesis of equality of the means is rejected, the
protein is declared as biomarker. The SER is calculated for
different values of the error of the first kind denoted α.

Fig.2 shows the MSER τ(%), dashed curves refers to the
t-test while solid one refers to the proposed method. For the
latter, the risk is constant since it is independent on α. Be-
sides, it is clear that MSER of the proposed method is lower
than the one achieved by the t-test. This result is coherent
with the optimality property of the proposed method that min-
imizes the Bayesian risk. Moreover, unlike t-test, the pro-
posed method is based on multivariate approach which takes
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Fig. 2. MSER τ(%) for the proposed method and for the t-
test with different values of the first kind error α and proteins
number P = 2 and P = 4. Number of individuals N = 100.

into account possible correlation between proteins. Further-
more, the gain obtained thanks to the proposed method in-
creases with P , since the larger P , the higher the possibility
of presence of correlation between them. This result attests
the relevancy of multivariate approach.

Tab. 1 proposes a study of the selection error rate SERi

for different number individuals (N = 100 and N = 1000)
and different number of biomarker denoted by NB. We
observe that performance are improved when increasing the
number of individuals N , which is explained by the improve-
ment of the estimation precision of the posteriori probability
for large N . Moreover, even for limited number of indi-
viduals, SER is lower than 5%, which agree the results
established in literature of proteomics. Besides, we note that
the SER is a bit higher when the number of biomarkers > 1
which is explained by the added number of parameters to
estimate.

NB: 0 1 2 3 4
SER (%): 0.068 0.402 0.716 0.537 0.191
SER (%): 0.001 0.025 0.026 0.012 0.010

Table 1. SER (%) for P = 4 and N = 100 (first row) and
N = 1000 (second row).

Now, the algorithm performances are assessed for larger
number of proteins. For P = 8, the number of candidate
models is 28 = 256, which is much larger than previously.
Moreover, as shown in Tab. 2, the performances are not really
degraded when compared with the second row of Tab. 1. This
result affirms the robustness of the optimal selection approach
and of the computation of the posterior probability.

NB: 0 4 8
SER (%): 0.0001 0.0027 0.0008

Table 2. SER (%) with N = 1000 and P = 8.

4. CONCLUSIONS AND PERSPECTIVES

Biomarker discovery is a crucial question with tremendous
applications and it is also a challenging statistical task. From
this viewpoint, an important issue is related to variable selec-
tion and the paper presents a novel approach for it. It is de-
velopped in a hierarchical Bayesian framework and relies on
an optimal strategy, i.e. the minimization of a risk. The hy-
perparameters are tuned to obtain poorly informative priors.
The procedure relies on the comparison of the 2P configura-
tions from P proteins, the most a posteriori probable model is
finally retained, and thus defines the selected variables. The
main difficulty is the required integration with respect to the
unknown parameters and an important contribution is to pro-
vide a closed-form expression. The developements then ben-
efit from very low complexity and ease of implementation.

The optimal decision proved to be suited for variable se-
lection in a complex context. The effectiveness of the method
is assessed by a theoritical characterization and a simulated
study that is in accordance with the theoritical optimality.
Furthermore, the proposed method compares favorably with
the Student test usually applied in this context.

We intend to further investigate the performances of
the method, firstly through a comparison with some exist-
ing approaches (BIC, AIC,. . . ). In addition, we intend to
take advantage of the method for other applications e.g. other
biomedical applications (genomics,. . . ), astrophysical data. . .
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A. APPENDIX: NORMAL-WISHART

Let m ∈ R
P and Γ ∈ R

P×P be a vector and a definite posi-
tive matrix. (m,Γ) follows Normal-Wishart distribution with
parameters (ν, η, µ,Λ) if:

fm,Γ(m,Γ) = K−1 det(Γ)(ν−P )/2

exp
[

−(tr[ΓΛ
−1] + η(m − µ)t

Γ(m − µ))/2
]

where K is normalization constant:

K = (2π)P/22νP/2η−P/2 det(Λ)ν/2ΓP (ν/2)

and ΓP is multivariate gamma function.

1156



B. REFERENCES

[1] R. E. Banks, M. J. Dunn, D. F. Hochstrasser, J. C. Sanchez,
W. Blackstock, D. J. Pappin, and P. J. Selby, “Proteomics: new
perspectives, new biomedical opportunities.” The Lancet, vol.
356, no. 18, pp. 1749–1756, November 2000.

[2] K.-A. Do, P. Muller, and M. Vannucci, Bayesian Inference
for Gene Expression And Proteomics. Cambridge, England:
Cambridge University Press, 2006.

[3] P. Szacherski, J.-F. Giovannelli, and P. Grangeat, “Joint
Bayesian hierarchical inversion-classification and application
in proteomics.” in Proceedings of the International Conference
on Statistical Signal Processing, Nice, France, June 2011.

[4] P. Szacherski, J.-F. Giovannelli, L. Gerfault, and P. Grangeat,
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