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ABSTRACT 
 

The primary aim of a Brain-Computer Interface (BCI) is to provide 

communication capabilities through brain signals recorded from the 

scalp for those with brain disorders to be able to interact with the 

outside world. In order to properly decode the 

electroencephalographic (EEG) brain signals, the BCI needs to 

adapt to the subject via calibration to ensure stable performance. 

One of the major challenges in realization of the EEG signals is the 

long calibration time required since they show significant variations 

between recording sessions even for the same subject within the 

same experimental condition. This paper proposes a score-based 

adaptive training algorithm that maximally utilizes relevant 

information from prior recording sessions and significantly shortens 

the calibration time. Also the proposed method is suitable to 

develop real-time, wearable, and low-power BCI embedded devices. 

The BCI developed in this work is based on the P300 word speller 

application introduced by Farwell and Donchin in 1988. The 

experimental results show that by employing few letters for 

calibration, the proposed adaptive training algorithm can achieve 

100% classification accuracy.  
 

Index Terms— BCI, EEG signal, P300 speller, Calibration, 

Adaptive training 
 

1. INTRODUCTION 
 

Encouraged by new understanding of brain function over the 

past two decades, many researchers have explored BCI 

technology as a new communication/control channel for those 

with severe neuromuscular disorders [1, 2].  The goal is to 

provide basic communication capabilities through the EEG brain 

signals recorded from implanted electrodes on their scalp so that 

they can express their wishes, operate word processing 

programs, or even control neuroprostheses. 

During the recent years, many research efforts have been 

made to improve the performance of BCI technology by 

introducing advanced and computationally expensive machine 

learning [3], signal processing [4], and classification techniques 

[5]. Therefore, high accuracy is achieved at the expense of 

increased computational complexity. However, in real-time and 

long-term recording applications, it is highly desirable to 

consider simpler and more efficient mathematical models to 

reduce the computational time and power consumption while 

maintaining adequate classification accuracy. With recent 

advances in embedded systems and signal processing 

techniques, there is a major interest in developing real-time, 

wearable, and low-power BCIs with embedded systems [6].  

One major limitation in BCI applications, especially the 

EEG-based BCIs, is the requirement for long calibration and 

training sessions (e.g., more than one hour) to collect sufficient 

training signals for constructing specific features and classifiers. 

This time-consuming calibration process is necessary for each 

new recording session and even for the same subjects that are 

beyond novices within the same experimental environment. Two 

main reasons the EEG patterns vary strongly from one session to 

another are 1) subjects have different psychological pre-

conditions and 2) electrode coupling conditions vary during 

different recording sessions (between electrodes and subject’s 

scalp).  

There are several previous studies on reducing the calibration 

time in the BCI technology and different approaches are 

proposed. In [7] and [8], subject transfer algorithms were 

proposed to shorten the calibration time for motor imagery BCI 

applications. Subject transfer is accomplished by constructing a 

prototype of spatial filters from other subjects and adapting the 

prototype to the new subject. Also in [9], a similar algorithm 

based on Support Vector Machine (SVM) was introduced for 

P300 speller BCI application. However, due to large inter-

subject variability, subject transfer algorithms require EEG data 

from multiple subjects in order to generate a robust prototype 

spatial filter, but those data may not be available for personal 

BCI devices. Another strategy is to focus on session transfer 

instead. In [10] and [11], an algorithm was proposed to skip the 

calibration process targeted towards long-term BCI users. It is 

achieved by generalizing a common spatial filter across sessions 

estimated via training data from prior sessions of the same 

subject and clustering of prior spatial filters. In [12], a method 

was presented that allowed reducing the calibration time for both 

long-term and novel users. Their approach is based on an 

ensemble of prior classifiers that are transferred to the current 

session. Both approaches require a large number of historic 

sessions be available and involve intensive training. Further 

approaches for reducing calibration processing time, especially 

for the P300 speller BCI application, are threshold-based 

adaptive training [13] and semi-supervised learning [14]. In [13], 

an adaptive training procedure was presented that aimed to 

estimate the amount of data needed for calibration based on two 

threshold values. The limitation of this approach is that the 

adaptive training is highly sensitive to the value of these 

thresholds. In [14], it was suggested to initially use a BCI with 

few labeled training samples, and then to incrementally adapt it 

with unlabeled online data using an iterative semi-supervised 

learning algorithm. However, the unsupervised learning 

algorithm needs a large amount of unlabeled data in order to 

achieve a robust BCI with a satisfactory performance.   

In this paper, we investigate the problem of reducing the 

required calibration time for the P300 speller BCI application 

[2]. We present a score-based adaptive training method to 

maximally extract relevant data from prior recording sessions. 
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To achieve this goal, minimal new recorded data are combined 

with the complementary data from prior sessions in a two-stage 

procedure. First, the low quality recorded data caused by 

artifacts or distraction are rejected based on a similarity score so 

that the quality of data for further processing is guaranteed. 

Then, a log-likelihood score-based elimination algorithm is 

designed to select the most complementary data from prior 

sessions to train the classifier. Our proposed method 

significantly shortens the calibration time and at the same time, 

it does not involve high computational signal processing such as 

Independent Component Analysis (ICA). Also, the EEG signals 

in our experiments are recorded from a dry electrode system 

which is more convenient to wear compared to gel-based 

electrodes used in previous studies. Therefore, it is suitable for 

long-term recording applications and is easy to implement in 

real-time, wearable, and low-power BCI embedded devices. The 

experimental results show that by using a few letters during the 

calibration procedure, the proposed adaptive training algorithm 

achieves 100% accuracy. Even with no calibration data 

provided, the proposed algorithm can achieve 79% accuracy.  

The paper is organized as follows. Section 2 describes the 

P300 speller experimental setting. Section 3 proposes the 

motivation and principle of our proposed score-based adaptive 

training method. Then, section 4 explains the experimental 

results and conclusions are presented in section 5. Finally, 

section 6 shows the relation to prior works 
 

2. TASK AND DATA ACQUISITION 
 

The BCI application investigated in this paper is the P300 speller 

introduced in [2]. It enables users to spell a word from a 6×6 

matrix that includes all the alphabet letters as well as other 

useful symbols (Fig. 1). The rows or columns intensify 

sequentially in a random order. To spell a word, the subjects are 

instructed to focus on the letter they wish to communicate by 

counting the number of times it intensifies. In response, a P300 

evoked potential is elicited in the brain which is a positive 

deflection in the EEG after 300ms [15]. By identifying this P300 

pattern, it is possible to infer the attended letter.  

     Six healthy subjects with no previous experience with the 

P300 speller participate in the experiment. EEG data are 

acquired using g.USBamp amplifier (g.tec Medical Engineering 

GmbH, Austria) and the BCI software platform BCI2000 [16] in 

a P300 speller scenario. Signals are recorded at 256 Hz sampling 

rate from 8 g.HASARA active dry electrodes from Fz, Cz, Pz, 

P3, P4, PO7, PO8, Oz and referenced at right mastoid.  

     For each subject, two to five sessions of data was recorded. In 

each session, the subject was instructed to choose between 20-30 

letters. For each letter, the intensification lasts for 250 ms 

followed by a 125 ms blank interval. Twelve intensifications 

make up one epoch which covers all the rows and columns. 15 

epochs are carried out for each letter. Thus for one letter, there 

are 15×12 =180 intensifications. The task of the P300 speller is 

to identify the subject’s desired letter based on the EEG data 

collected during the 180 intensifications. 
 

3. THE PROPOSED ALGORITHM 

Our proposed approach is a two-stage score-based adaptive 

training algorithm. In the first stage, the low quality recorded 

data are rejected based on a similarity score as the preprocessing  

  

Fig1. P300 speller matrix with one row intensified 
 

procedure. In the second stage, an adaptive data selection 

approach, based on log-likelihood score, is presented in the 

classifier training procedure. 
 

3.1 Preprocessing: trial rejection 
 

The raw EEG data consist of useful trials carrying discriminative 

information to detect the target letter. They also include low 

quality recorded data caused by some artifacts (e.g., eye 

movement) or due to the subject losing attention, etc. Each trial 

is composed of all data samples between 0-800 ms from the 

beginning of target letter intensification. In order to achieve 

better classification performance, the bad trials need to be 

rejected in the preprocessing stage to improve the data quality. 

The most common method used for artifact removal is ICA [17]. 

However, ICA is not a good preprocessing candidate for real-

time applications due to the high computation requirement. In 

this paper, we present a template matching algorithm based on a 

similarity score for trial rejection in the preprocessing stage that 

is straightforward, easy to implement and at the same time leads 

to high performance. The template is defined based on the 

average of k target trials in which the P300 pattern is most likely 

present (k=30 used in this paper),                          

                           
 

 
∑       

 
                                        (1) 

where       is the template for the electrode channel h, and 

       is the i-th target trial. Then, we calculate the similarity 

score between each single trial and the template as below,  

                 
    

√∑          )        ))  
   

√ 
                        (2) 

where i is the trial index, j = {1, 2, …, n} is the sample index in 

each trial, and   
  is the similarity score between the i-th trial and 

the channel h. Assuming that each recorded sample is 

normalized to the interval [0, 1], the above measure maps the 

similarities between the trial i-th and the h-th template to a real 

number in the interval [0,1]. Then, we obtain a ranking 

according to the score,   
  that rejects the trials corresponding to 

the λ lowest scores for each channel. Therefore, the trials 

corresponding to the eye movement, muscle artifacts, or 

distraction are rejected to guarantee the quality of data for 

further processing. 
 

3.2. Score-based adaptive data selection 
 

A major limitation in EEG-based BCIs is the requirement for 

collecting sufficient training data at the beginning of every 

session (i.e. calibration) for constructing robust features and 

classifiers. One way to resolve this issue is to employ previously 

recorded data to adapt with the new session. Even if we obtain 

data from multiple prior sessions, it might not be useful for this 

purpose due to the inter-session variability. Therefore, we need 

to design a mechanism to select the most relevant data from 
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prior sessions and combine with minimal, currently-available 

data in the new session. In this section, we propose a score-

based adaptive data selection algorithm based on the backward 

elimination procedure [18], described in Algorithm 1. In this 

algorithm, the function [           )]        {   )} returns 

imax, the value of i for which f(i) is maximum, and the maximum 

value is denoted by f(imax). The function, train&test(D_Training, 

D_Testing) is conventionally supposed to return the accuracy 

obtained by training the classifier on D_Training data and 

testing on D_Testing data, 

                            Accuracyφ = TPφ – FPφ                            (3)      

where TPφ and FPφ are the set of true positive and false positive 

for the letter φ, respectively. However, the accuracy measure 

may be too coarse to capture the discriminative information 

among different letters. Therefore in this paper, we define the 

function train&test(D_Training, D_Testing) to return  ̂coreφ, as 

the soft accuracy measure for the test target letter φ within all 

rows and columns. In this way, the scores are obtained by 

Stepwise Linear Discriminant Analysis (SLDA) training on 

D_Training data and testing on D_Testing data based on the 

approach in [6].      is the original score of the input x for the 

row/column p defined by, 
 

   
1

ep

p i

i

Sc S


x x  (4) 

where    is the decision score calculated by SLDA classifier for 

epoch j. ep is the total number of epochs. In this paper, ep=15. 

Assuming the target letter φ is located at row p, and column q, 

the likelihood of the letter φ is Scφ=Scp+Scq. As the distribution 

of the scores for each target letter may be different due to 

variability of the brain signals, the scores are less compatible 

across different letters. Hence, score normalization is a 

necessary step to provide consistency over the output scores of 

the classifier. The log-likelihood ratio score normalization for 

the letter φ is calculated as below, 

        
1, 1,

1
log exp

1

M M
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 
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 
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where M=6 is the number of rows/columns in the matrix,      is 

the log-likelihood score for the letter φ, and exp(.) is the 

exponential function. Therefore,  ̂coreφ, the soft accuracy 

measure for the test target letter φ is calculated as, 

     
1,..., 1,...,
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T
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where c is the number of target letters and TP and FP are the set 

of true positive and false positive data, respectively. If the index 

of the winner class for the input xi is equal to φ (i.e.

 
1,...,

argmax j i
j c

llr 


x ), 

 
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_

_

i i

i i

TP True label

FP True label





  

  

x x

x x
 (7) 

 ̂core is a soft measure for the overall performance of the 

system that is expected to capture more discriminative 

information than the Accuracy measure. 

     Using Algorithm 1, a training set Dtr = {C1, C2, …,    
} 

including the total    letters is first generated. Ci is the subset  

Algorithm 1: Adaptive data selection algorithm 

Input:    Dtr: original training data; Ddev: The development data 

Output: Str:  final selected subset of training data  
 

Initialize:  baseline score:  ̂     = train&test (Dtr, Ddev); 

               Remaining0 = Dtr ; n=1; Nt =    ;  

while n<      do 
 

     for i=1 to Nt 

Remove the data corresponding to the i-th letter from Dtr 

 ̂     = train&test (Dtr –Ci , Ddev) ; 

end 

Obtain a ranking of  ̂     , find the maximal score value 

(       ̂        ) =        ̂      ) ;  

if   ̂           ̂        then 

     Remainingn = Remainingn-1 -      
; 

      ̂     =  ̂       ; 

    Nt = Nt -1; 

    n=n+1; 

else 

     Break; 

end 

end 

Str = Remainingn ; 
 

data for the i-th letter. Then, it sequentially removes the letters 

from the current set of letters, in order to maximize  ̂core as the 

overall performance measure on a development set Ddev which is 

a portion of available labeled data that is not contributed in the 

training.  After the adaptive data selection procedure, a new data 

set Str is generated to train the SLDA classifier. To evaluate the 

performance of the proposed algorithm, a test set, Dtest, including 

only the data in the new session not contributed in the training or 

the development sets are employed. The classification accuracy 

is calculated using LDA classifier trained using Str. 

      

4. RESULTS 
 

4.1 Trial Rejection Results 
 

To assess the performance of the trial rejection method, we 

compare the classification accuracy of the signal with and 

without trial rejection. Three λ values, representing the number 

of rejected trials, are used in our experiments (i.e. λ = 5, 10, 15) 

as reported in Table 1. Subject #1, 3, 4, 6 can only achieve 100% 

accuracy after applying the trial rejection.  Also Subject #2 and 5 

achieve 100% accuracy with fewer epochs than before. As 

expected, the results prove that the trial rejection method 

considerably improves the quality of data, and as a result it leads 

to better performance. Table 1 also shows that λ=10 leads to the 

best results in our experiments. In general, λ can be adaptively 

selected by cross validation on the training data.   

Table 1  Classification accuracy (in %) of the signal with/without trial 

rejection (100(n) means achieving 100% accuracy after n epochs)  

 Subject 

Without  

Trial Rejection 

With Trial Rejection 

λ =5 λ =10 λ =15 

#1 67 67 100 (11) 67 

#2 100 (14) 67 100 (4) 100 (4) 

#3 80 100 (9) 100 (11) 80 

#4 75 75 100(4) 100(7) 

#5 100 (10) 100(10) 100(6) 100(9) 

#6 80 80 100(3) 80 

Average 83.66 81.5 100(6) 87.8 
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4.2 Adaptive Training Results 
 

In our experiments, we assume that data for five target letters are 

available in the current session. The rest of the data in the 

current session is used as the test set to assess the performance 

of our proposed algorithm. We compare the classification 

accuracy achieved via the score-based adaptive training 

approach, to the system with no adaptive training (no historical 

data from prior sessions are taken into account). The comparison 

is depicted in Figure 2 which shows that if no new data is 

available, the non-adaptive system cannot produce any output, 

whereas our proposed method already generates stable 

classification accuracy up to 79%. Using all five available target 

letters’ data, the non-adaptive system achieves the same 

accuracy that the proposed adaptive training method generated 

without any data from the current session. With the five target 

letters’ data, the proposed adaptive training method achieves 

91% average accuracy within six subjects shown in Figure 1.  

     Then, we evaluate the effectiveness of the proposed score-

based adaptive data selection criterion. To do so, we compare 

the adaptive training based on  ̂core in Eq. (6) with the 

Accuracy criterion in Eq. (3). The results of the comparison 

between the accuracy-based and the score-based methods are 

reported in Table 2. The results achieved based on the  ̂core 

value are constantly and considerably better than those based on 

the Accuracy value with different number of available letters.   

     The last two columns in Table 2 show the averaged 

classification results with different number of available letters in 

the new session under the accuracy-based and score-based 

adaptive training method. The proposed method achieves more 

than 80% average accuracy on all the subjects with only two 

available letters’ data, and more than 90% average accuracy with 

five letters. 

The results in Table 2 show that the proposed  ̂core measure 

and the adaptive training algorithm are effective in improving 

the Accuracy measure by capturing more discriminative 

information during the training process. Finally, based on the 

results of the score-based adaptive training algorithm, five letters 

are enough for the calibration session to obtain good 

classification accuracy. Compared to the requirement of at least 

30 letters recording in the typical calibration period 

(30*67.5=2025 seconds), our proposed algorithm dramatically 

reduces the calibration time (5*67.5s=337.5 seconds). 

 

Fig 2 Comparison of the classification accuracy achieved by the non-

adaptive method (OD, in dash line) and the score-based adaptive 

training method (AT, in solid line) 

 
5. CONCLUSION 

 

In this paper, we present a score-based adaptive training 

algorithm to efficiently shorten the calibration period, as well as 

achieve better classification performance. In the proposed 

approach, the data from several prior sessions are combined with 

few currently available data in the new session. The adaptive 

training process is accomplished by rejecting the redundant trials 

based on a similarity score in the preprocessing stage, and then 

selecting the most relevant data from prior sessions based on the 

log-likelihood score value. The experimental results validate the 

good performance of our proposed algorithm. With five 

available letters’ data in the new session, the classification 

accuracy could achieve 100% (91% on average). Also with no 

available new data, our proposed method can achieve 79% 

accuracy (70% on average). Furthermore, in contrast to a non-

adaptive method and the accuracy-based adaptive training 

algorithm, our proposed algorithm significantly outperforms for 

every subjects under different numbers of available letters’ data.  

Finally, the results of the proposed algorithm show that five 

letters are enough for calibration to achieve good classification 

performance. 

 

 

Table 2 Classification accuracy (in %) achieved by the accuracy-based (Acc) vs. score-based (Score) adaptive training method. 

# of letters 

available in 

new session 

Subjects Averaged on 

all 6 subjects #1 #2 #3 #4 #5 #6 

Score Acc Score Acc Score Acc Score Acc Score Acc Score Acc Score Acc 

0 64.3 57.1 64.3 57.1 78.6 71.4 78.6 64.3 68.2 59.1 60 53.3 69 60.4 

1 71.4 42.9 71.4 71.4 78.6 71.4 92.9 78.6 81.8 72.7 73.3 53.3 78.2 65.1 

2 71.4 57.1 78.6 71.4 78.6 57.1 92.9 78.6 81.8 72.7 80 60 80.5 66.2 

3 71.4 71.4 78.6 78.6 85.7 78.6 92.9 78.6 86.4 77.3 80 73.3 82.5 76.3 

4 78.6 71.4 92.9 78.6 92.9 78.6 100 85.7 86.4 72.7 86.7 73.3 89.6 76.7 

5 78.6 71.4 92.9 85.7 92.9 78.6 100 85.7 86.4 81.8 93.3 80.0 90.7 80.5 

Average 72.6 61.9 79.8 73.8 84.5 72.6 92.9 78.6 81.8 72.7 78.9 65.6 
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