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ABSTRACT

The common spatial pattern (CSP) method has large number
of applications in brain machine interfaces (BMI) to extract
features from the multichannel neural activity through a set
of linear spatial projections. These spatial projections min-
imize the Rayleigh quotient (RQ) as the objective function,
which is the variance ratio of the classes. The CSP method
easily overfits the data when the number of training trials is
not sufficiently large and it is sensitive to daily variation of
multichannel electrode placement, which limits its applica-
bility for everyday use in BMI systems. To overcome these
problems, the amount of channels that is used in projections,
should be limited to some adequate number. We introduce a
spatially sparse projection (SSP) method that renders uncon-
strained minimization possible via a new objective function
with an approximated `1 penalty. We apply our new algorithm
with a baseline regularization to the ECoG data involving fin-
ger movements to gain stability with respect to the number of
sparse channels.

Index Terms— Baseline regularization, Brain machine
interfaces, Common spatial patterns, Sparse spatial projec-
tions, Unconstrained optimization

1. INTRODUCTION

The aim of the BMI technology is to help disabled people
by establishing a communication channel with their environ-
ment using only their brain signals. The recent advances in
electrode design technology allow BMI applications to use
increasing number of electrodes. In this scheme, the com-
mon spatial pattern (CSP) algorithm is widely used due to
its simplicity and lower computational complexity to extract
features from high-density recordings both using noninvasive
and invasive modalities [1, 2].

The benefits of the CSP method come with some draw-
backs. One major drawback of the CSP is that it generally
overfits the data when it is recorded from a large number of
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electrodes and there is limited number of train trials. Further-
more, the chance that CSP uses a noisy or corrupted channel
linearly increases with increasing number of recording chan-
nels. Another major problem is the robustness over time in
CSP applications [3, 4]. Using all channels in spatial projec-
tions of CSP may reduce the classification accuracy in case
the electrode locations slightly change in different sessions.
In this case, CSP method requires almost identical electrode
positions over time, which is difficult to realize [5]. The
sparseness of the spatial filter might have an important role
to increase the robustness and generalization capacity of the
BMI system.

The CSP method increases or decreases the variance ratio
of two classes. The variance ratio of two classes can be repre-
sented in terms of Rayleigh Quotient of the spatial covariance
matrices. The RQ is defined as

R(w) =
wTAw

wTBw
(1)

where A and B are the spatial covariance matrices of two
different classes and w is the spatial filter that we want to
find. The solution of the CSP is the generalized eigenvalue
decomposition of matrices A and B. This problem can also be
solved in an unconstrained problem in the form of

L(w) = R(w) + λ‖w‖ (2)

where R(w) is the objective function, ‖w‖ is the `1 norm
based penalty and λ is a constant that controls the sparsity of
the solution. Since RQ does not depend on the magnitude of
the filter w, we observed that the solution to this optimization
problem is essentially scaled version of the generalized eigen-
value decomposition (GED) solution and does not depend on
λ. Therefore, we introduced a novel objective function which
has dependency on its magnitude and rise the same solution
as GED when λ is equal to zero [6].

A number of studies investigated putting the CSP into al-
ternative optimization forms to obtain a sparse solution for
it. In [7] the authors converted CSP into a quadratically con-
strained quadratic optimization problem with `1 penalty; oth-
ers used an `1/`2 [3, 8] norm based solution. These studies
have reported a slight decrease or no change in the classifi-
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cation accuracy while decreasing the number of channels sig-
nificantly. Recently, quasi `0 norm based methods was used
for obtaining the sparse solution which resulted an improved
classification accuracy. Since `0 norm is non-convex, com-
binatorial and NP-hard, they implemented greedy solutions
such as forward selection (FS), backward elimination (BE)
[9] and recursive weight elimination (RWE) [10] to decrease
the computational complexity. It has been shown that BE was
better than RWE and FS (less myopic) in terms of classifica-
tion error and sparseness level but associated with very high
complexity making it difficult to use in rapid prototyping sce-
narios.

Selecting the sparsity level that produces high accuracy
is crucial for the sparse spatial filters. We observed that the
small variations in sparsity may lead to large change in the
classification accuracy [6]. So a more representative sparse
spatial filters needs to be constructed to eliminate large devi-
ations on the classification accuracy.

In this paper, we develop a baseline regularization algo-
rithm to improve the classification accuracy and eliminate in-
stability over the sparsity levels. The baseline regularization
make the sparse spatial patterns to represent the fingers, in-
stead of discriminating them from each other. The SSP which
is computationally efficient sparse spatial projection based
on a novel objective function and RWE are used to demon-
strate the efficiency of the baseline regularization. The rest of
the paper is organized as follows. In the following section,
we describe our novel objective function and its relation to
RQ. Then we explain its use in an unconstrained optimization
problem. Next, we apply our method on the BCI competi-
tion IV ECoG dataset involving individuated movements of
five fingers [11]. We also compare our method to standard
CSP. Finally, we investigate the contribution of the baseline
regularization to the classification accuracies by constructing
a mixed generative/discriminative sparse filters.

2. MATERIAL AND METHODS

The CSP filters are weighted linear combination of record-
ing channels, which are specialized to produce spatial projec-
tions maximizing the variance of one class and minimizing
the other. The spatial projection is computed using

XCSP =WTX (3)

where the columns of W are the vectors representing each
spatial projection and X is the multichannel ECoG data.

2.1. Sparse Spatial Filter

We sparsify the spatial filters to overcome the drawbacks of
the CSP method that are described earlier and to increase
the classification accuracy and the generalization capability
of the method. We assume that a few channel of the data has

the discriminatory information and the number of these chan-
nels is much smaller than the actual number of all recording
channels. In this scheme, assume that the data was recorded
from K channels. We are interested in obtaining a sparse
spatial projection using an unconstrained minimization prob-
lem in the form of (2), where w has only k nonzero entries,
card(w) = k and k � K. Since R(w) does not depend
on the gain of w, the optimizer arbitrarily reduces the gain
of w to minimize regularization term λ‖w‖ after finding the
direction that minimizes R(w). Thus, the solution of the op-
timization problem that uses R(w) as an objective function is
essentially the same as the GED solution.

To find a sparse solution we need to have an objective
function that depends on the gain of w. In this scheme, we
replaced R(w) with the following objective function.

G(w) = wTAw +
1

wTBw
(4)

This function is bounded from below and has interesting prop-
erties. Let us define a = wTAw and b = wTBw . If we de-
fine RQ in terms of a and b such that R = a/b then our new
objective function can be expressed as

G(w) = a+
1

b
=
ab

b
+

1

b
= Rb+

1

b
(5)

The derivative of G(w) with respect to R is equal to b which
is always positive. This indicates that our objective function
G(w) decreases with a decrease in R value. After taking the
derivative of G(w) with respect to b and solving Equation 6,

∂G(w)

∂b
= R− 1

b2
= 0 (6)

we note that b is equal to
√
R−1. By inserting b value into the

Equation 5 we obtain the minimum value of G(w) as 2
√
R.

This result shows that the direction that minimizes R also
minimizes G(w).

We put G(w) into unconstrained optimization formula-
tion in (2) as the objective function. We placed a twice differ-
entiable smooth version of `1 (epsL1) which is sufficiently
close to minimizing `1 [12] as a regularization parameter.
The main advantage of this approach is that, since epsL1 and
G(w) are both twice differentiable we can directly apply an
unconstrained optimization method to minimize L(w) [13].
The epsL1 is defined as

‖w‖ =
K∑
i=1

√
w2

i + ε (7)

where ε is a sufficiently small parameter and K is the dimen-
sion of w. The epsL1 approximates the `1 norm and they are
identical when ε is equal to zero. Twice differentiability of
the epsL1 norm allows us to use it when wi is equal to zero
unlike the regular `1 norm which is not differentiable at zero.
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The entries of w generally were not exactly equal to zero,
so we normalized w to its maximum absolute value and elim-
inated the weights consequently corresponding channels that
do not exceed a predefined threshold (=10−2). We computed
the desired cardinality which is the number of channels to be
selected for the spatial projection by implementing a bisection
search [14] on the λ. The upper border of λ was determined
initially using theG(wc)/‖wc‖ ratio where wc is the full CSP
solution. In case the initial upper border results a cardinality
larger than the desired value, we kept doubling the λ param-
eter until we obtained a λ that results a cardinality which is
less than or equal to the target value.

2.2. Recursive Weight Elimination

Recursive weight elimination (RWE) is an `0 norm based
greedy search algorithm to obtain sparse filters in very a ef-
ficient and effective way [10]. The algorithm starts with a
full size covariance matrices of the traditional CSP method.
Assume that the size of these covariance matrices is K ×K.
In the very first step, RWE solves general CSP problem and
finds the weight vector w. The contribution of the smallest
magnitude coefficient can be ignored compared to the other
coefficients, since we have a high number of channels. As-
sume that the index of this small coefficient is k. We can
remove this coefficient by removing kth row and column of
the full size covariance matrices and solving the CSP on these
new K − 1 ×K − 1 matrices. We can decrease the number
of channels to the desired cardinality level by recursively
applying this algorithm to the smaller matrices. Each cardi-
nality reduction involves solving a traditional CSP, therefore
this method is faster than other `0 norm based greedy search
algorithms such as BE or FS [9].

2.3. Baseline Regularized Sparse Spatial Filters

The data set consists of finger movement and baseline re-
gions. We used the baseline data to regularize the finger to
finger contrast. In other words, each multichannel finger data
is contrasted with a mixture of baseline and another finger.
Let’s assume A is the spatial covariance matrix of the first
finger, and C is spatial covariance matrix of one of the other
four fingers and D is the covariance matrix of the baseline,
we find a solution to the following optimization problem,

L(w) = wT (αC + (1− α)D)w +
1

wTAw
+ λ‖w‖ (8)

where α is the mixing coefficient ranging from 0 to 1. We
contrast a finger to another finger when α is 1 to obtain dis-
criminative spatial filters. On the other hand when α is equal
to zero, we contrast each finger with baseline which yields
representative spatial filters. Therefore, α determines level
discrimination or representation characteristic of the con-

structed sparse filter. Similarly, we also apply this approach
to RWE method.

In this scheme, we computed the first spatial filter w that
minimizes the L(w) to obtain the sparse filter that maximize
the variance of the first finger. Then we interchanged the ma-
trices A and C to find the spatial filter that maximizes the
variance of the other finger. In order to find multiple sparse
filters we deflated the covariance matrices with these initial
sparse vectors using the Schur complement deflation method
described in [15]. Using this new deflated matrices, we find
the second set of spatial filters and obtain a total of 4 spatial
filters.

2.4. ECoG Dataset

The ECoG data was recorded from three subjects during fin-
ger flexions and extensions [11] with a sampling rate of 1
kHz. The electrode grid was placed on the surface of the
brain. Each electrode array contained 48 (8x6) or 64 (8x8)
platinum electrodes. The finger index to be moved was shown
with a cue on a computer monitor. The subjects moved one of
their five fingers 3-5 times during the cue period. The ECoG
data of each subject was subband filtered in the gamma fre-
quency band (65-200 Hz) as in [16]. We used one second data
following the movement onset and 500 ms data before the
movement onset in the analysis. The dataset contains around
146 trials for each subject.

The multichannel signal was transformed into four chan-
nel signal using the spatial filters are derived using each CSP
methods. After computing the spatial filter outputs, we cal-
culated the energy of the signal and converted it to log scale
for each sparse filter and we used them as input features to
lib-SVM classifier with an RBF kernel [17].

Since we are tackling a multiclass problem for the ECoG
dataset, we used the pairwise discrimination strategy of [2] to
apply the CSP to the five-class finger movement data. In other
words, we constructed sparse spatial filters tuned to contrast
pairs of finger movements such as 1 vs. 2; 1 vs. 3; 2 vs. 4 etc.

We studied the classification accuracy as a function of car-
dinality and the mixing parameter α. On the training data
with the purpose of finding optimum sparseness level for the
classification, we computed several sparse solutions, with de-
creasing cardinality. The sparse CSP methods were employed
with k ∈ {40, 30, 20, 15, 10, 5, 2, 1}. For each cardinality,
we computed the corresponding RQ value. We studied the
inverse of the RQ (IRQ) curve and determined the optimal
cardinality where its value suddenly dropped indicating we
started to lose informative channels.

Two times two fold cross validation were run on the en-
tire data set and the results were averaged over the folds and
iterations. In average, we used 15 ± 2 train trials per finger.
The value of the ε in epsL1 regularization term was chosen to
be 10−6. We used α ∈ {0, 0.25, 0.5, 0.75, 1} for the baseline
regularization experiments.
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Fig. 1. The average IRQ of all subjects versus cardinality for
SSP method (a) and RWE method(b) for the α values 0.75 and
0.5 respectively. The red line is the 10 percent threshold that
determines the optimum cardinality to be used in the test data.
The optimum cardinality levels are five and two respectively.
The line with circle markers is IRQ curve and the line with
triangle markers is derivative of the IRQ curve.

3. RESULTS

We depicted the change in IRQ values for each cardinality as
shown in Fig. 1a and 1b. As expected, decreasing the car-
dinality of the spatial projection resulted to a decrease in the
IRQ value. To determine the optimum cardinality to be used
in classification on the test data, we selected the cardinality
that is below 10 % of the maximum relative change (See the
dashed lines in Fig. 1. The cardinality value was found to be
5 for SSP method. For the RWE method the cardinality value
was 2. These indices perfectly corresponded to the elbow of
the IRQ curve, which indicates loss of informative channels.
In Table 1, we provide the classification results and selected
cardinalities using SSP, CSP and `0 based greedy solution,
RWE with a mixing parameter α that provides minimum ac-
curacy error. In order to give a flavor about the change in error
rate versus the cardinality, we provided the related classifica-
tion error curves in Fig. 2.

On all subjects we studied, we observed that the SSP
method consistently outperformed the CSP method. We
noted that the minimum error rate was obtained with SSP
method. SSP and RWE methods used cardinality of 5 and 2
to achieve the minimum error rate respectively. As expected
the full CSP solution did not perform as good as the other
sparse methods and likely overfitted the training data.

We also note that the baseline regularization removes

Table 1. Classification error rates (%) for each subject using
SVM classifier

Cardinality α Subject 1 Subject 2 Subject 3 Avg

RWE 2 0.5 17.7 14.3 12.9 14.95

SSP 5 0.75 19.6 12 12.8 14.79

CSP All 0.25 25.7 19.6 15.3 20.19
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Fig. 2. The classification error curve versus the cardinality
for SSP method (a) and RWE method(b). The last data point
corresponds to the results obtained from standard CSP which
uses all channels.

overfitting of the classifier and provides robustness to the
sparsity level. In Fig. 2 it is shown that the increase in car-
dinality did not affect the regularized (α 6= 1) sparse filters
as much as unregularized (α = 1) sparse filters. On the
other, hand pure generative (α = 0) sparse filters accuracy
error tends to increase with decreasing cardinality below the
cardinality level 10.

4. CONCLUSION

In general the dimensionality of the BMI data is larger than
the number of training data. This imbalance between the
amount of training data and the number of channels results
overfitting on the training data. To minimize overfitting and
eliminate noisy channels, we introduced a spatially sparse
projection technique (SSP) based on a novel objective func-
tion. By using an approximated `1 norm, we computed the
sparse spatial filters through an unconstrained minimization
formulation with standard optimization algorithm. We ap-
plied our method to ECoG dataset and compared its classi-
fication capacity to standard CSP and to an `0 norm based
greedy technique. The sparse methods outperformed the stan-
dard CSP method. We observed that the sparse methods are
sensitive to the cardinality, therefore we regularized the sparse
spatial filters using the baseline data. We study the effect of
regularization on classification accuracy by implementing a
baseline/movement mixing method. Our results indicate that
baseline regularization improves the classification accuracies
as well as it provides stability with respect to the cardinality
level.
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