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ABSTRACT

Accurate detection of individual cell nuclei in microscopic images
is an essential task for many biological studies. Blur, clutter, bleed
through, imaging noise and touching and partially overlapping nu-
clei with varying sizes and shapes make automated detection of indi-
vidual cell nuclei a challenging task using image analysis. In this pa-
per we propose an automated method for robust detection of individ-
ual cell nuclei in fluorescence in-situ hybridization (FISH) images
obtained via confocal microscopy. Our algorithm consists of the
following steps: image denoising, binarization, detection of nuclear
seed points combining the fast radial symmetric transform (FRST)
and a distance-based non-maximum suppression. We show that our
algorithm provides improved detection accuracy compared to the ex-
isting algorithms.

Index Terms— Nucleus detection, FRST, FISH images, uni-
modal thresholding.

1. INTRODUCTION

The detection of cells in fluorescent in-situ hybridization (FISH) im-
ages is an important first task for many biological studies includ-
ing high throughput analysis of gene expression level, morphology,
and quantifying molecular markers and phenotypes in a single cell.
Counting cells or knowing the concentration of specific cells such as
red blood cells, viruses and pathogens in medicine can reveal impor-
tant information about the progress of an infectious disease. Stud-
ies that examine the growth rate of microorganisms also require cell
counting. Also cell migrations and deformations play an essential
role in biological processes, such as parasite invasion, immune re-
sponse, embryonic development, and cancer detection. Thus, there
is a significant interest in these applications to be able to detect the
cell nuclei with high accuracy.

Manual cell counting by visual inspection is difficult, labor in-
tensive, time consuming, and a fatiguing process. This is due to var-
ious reasons such as fluctuating intensities and morphological vari-
ations of the cells within images [1], variances in illumination [2],
crowding and overlapping of cells of varying sizes and shapes, acci-
dental and non-specific staining, low signal-to-ratio (SNR) [3], spec-
tral unmixing errors, microscopy imaging limitations and the large
number of cells that the pathologist has to count per image. More-
over, the estimated cell counts using manual analysis are not repro-
ducible, as the task can be subjective, differing from person to per-
son, and even one time to another. These factors serve as a motiva-
tion for designing an automated algorithm for the detection of cell
nuclei. However, for the reasons mentioned above, the design of
such an algorithm is challenging.

The commonly available software for cell detection is usu-
ally based on traditional and classical techniques such as correla-

tion matching, global thresholding, morphological operations and
energy minimization and optimization. These techniques suffer
considerably due to over-generalization, limiting their use on im-
ages gathered in cell biology research. To overcome their inherent
limitations, existing software tools often have user interfaces that
allow users to manually edit the results obtained. This, however,
negates the benefits of automation such as speed and reproducibility.
Recently, several new methods have been proposed for automated
nucleus detection [2–12]. Al-Kofahi et al. [3] proposed a cell de-
tection algorithm using a multiscale Laplacian-of-Gaussian (LoG)
filtering constrained by distance-map-based adaptive scale selection.
This method suffers from two drawbacks: 1) it requires a bimodal
histogram, and 2) for large and highly textured cells, it often finds
multiple seeds within one nucleus. Parvin et al. [7] introduced the
iterative voting method, which uses oriented kernels for inferring
saliency of objects in order to detect them. This method produces
false seeds in the overlapping cell regions, when the intensity of
the overlapping cell regions is brighter (or darker) than the non-
overlapping regions within individual cells. Qi et al. [8] reported a
cell detection algorithm that utilizes single-path voting followed by
mean-shift clustering. This method performs well when we have a
uniform cell size within an image, but detects false seeds when the
cells are varying in size and shape.

In this paper we propose an automated technique to detect the
cell nuclei of Drosophila melanogaster obtained via confocal mi-
croscopy. We reduce noise using the multiscale variance stabilizing
transform (MS-VST), binarize the images using a histogram thresh-
olding technique, create a response image using the fast radial sym-
metric transform (FRST), and finally obtain a single seed/marker for
every nucleus using distance-based non-maximum suppression.

2. METHODS

The ovarian germ-line of the Drosophila melanogaster consists of
two types of cells, namely “nurse cells" and “follicle cells". The
follicle cells are smaller than the nurse cells and surround the nurse
cells in an elliptical fashion. Fig.1a shows a single slice of a 3-D
data set with nurse cells surrounded by follicle cells.

2.1. Image denoising

We use Zhang’s denoising method (MS-VST) [13], which is partic-
ularly suited for confocal microscope images, to suppress the back-
ground noise of the images, thereby increasing the contrast between
the foreground nuclei and the surrounding background. The MS-
VST models the image as a mixed Poisson-Gaussian (MPG) process.
Thus, an observed image In is given by

In = αXn + Yn, Xn∼P(λn), Yn∼N (µn, σ
2
n) (1)
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Fig. 1: (a) Original image. (b) Denoised image. (c) Image after thresholding and additional refinements. (d) Image after applying FRST. (e)
Detected seeds superimposed (red) onto original image after non-maximum suppression.

where α > 0 is the overall gain of the detector, Xn is the Pois-
son variable modeling the photon counting, Yn is a normal variable
representing readout noise and Xn and Yn are assumed mutually in-
dependent. The goal here is to use a MS-VST to Gaussianize the
filtered MPG process using the isotropic undecimated wavelet trans-
form as a filter and detect the significant filter coefficients in order
to suppress the noise. The unknown parameters α, µ, and σ are
estimated from samples in a uniform region within the image back-
ground. An example image after denoising is shown in Fig. 1b.

2.2. Thresholding

The MS-VST denoising enhances the separation between modes in
the bimodal histogram of each image. For our image data, the fore-
ground nuclei regions correspond to the peak in the histogram at the
large gray levels. We employ Otsu’s thresholding [14] to remove the
peak in the histogram corresponding to small gray level values. The
residual histogram is unimodal with a steep monotonic increase till a
peak is reached, followed by a Gaussian-like decay that corresponds
to the foreground nuclei regions. We use Rosin’s method [15] to
find a threshold and identify the foreground nucleus regions. Due
to the textures and intensity fluctuations present within the nuclei,
some parts of the nuclei get detected as background.We make two
refinements: 1) fill all the holes within each nucleus, where a hole
is defined as a set of pixels that cannot be reached by filling in the
background from the edge of the image and 2) dilate each region us-
ing a disk structuring element with a two-pixel radius. Fig. 1c shows
the result after thresholding and the additional refinements.

2.3. Fast radial symmetric transform

Thresholding the denoised images finds foreground nuclei, which
appear combined together in areas where they are densely popu-
lated. Thresholding helps to detect the individual foreground nu-
clei in areas where they are sparsely populated, but in areas where
the nuclei appear clustered we still need to detect the individual nu-
clei. For this purpose we use the FRST method proposed by Loy
et al. [16]. The FRST is a computationally efficient, non-iterative
procedure that computes the centers of radial symmetry along vary-
ing radii ρmin ≤ ρ ≤ ρmax by operating along the direction of the
image gradient. Since nuclei are somewhat radially symmetric ob-
jects, this operation is well suited for their localization. To produce
the candidate nuclei locations, first the gradient g(x) is calculated
at each pixel x. For each integer radius ρ, an orientation projec-
tion image Oρ and a magnitude projection image Mρ are formed.
These images are generated by examining the gradient g at a point
x, from which a positively affected pixel P+(x) and a negatively af-

fected pixel P−(x) are determined. The positively affected pixel is
that pixel which the gradient g(x) is pointing to, at a distance ρ from
the location x, and the negatively affected pixel is that pixel which
the gradient g(x) is pointing away from, at a distance ρ from the
location x. The coordinates of P+(x) and P−(x) are given by the
following equations.

P+(x) = x+ round

(

g(x)

‖ g(x) ‖
ρ

)

(2)

P−(x) = x− round

(

g(x)

‖ g(x) ‖
ρ

)

(3)

The orientation and magnitude projection images are initially
zero. For each pair (P+(x), P−(x)) of affected pixels, the corre-
sponding pixel P+(x) in the image On and in the image Mn is in-
cremented by 1 and ‖ g(x) ‖, respectively, while the corresponding
pixel P−(x) is decremented by the same quantities. The radial sym-
metry contribution at radius ρ is defined as a convolution

Sρ = Fρ∗Gρ, (4)

where

Fρ(x) =
Mρ(x)

kρ

(

| Õρ(x) |

kρ

)γ

(5)

Õρ(x) =

{

Oρ(x) if | Oρ(x) |< kρ
kρ otherwise

Gρ is a two dimensional Gaussian, γ is the radial strictness param-
eter, and kρ is a scaling factor that normalizes Mρ and Oρ across
different radii.

The FRST transform is defined as the average of the symmetry
contributions over all radii considered,

S =
1

| N |

∑

ρ∈N

Sρ (6)

where N is the set of radii being considered. In order to increase
the computational speed of the algorithm, we compute the transform
only at the positively affected pixels P+(x) and ignore the computa-
tion at negatively affected pixels P−(x) when we determine Oρ and
Mρ, as our interest lies in the foreground nuclei regions, which ap-
pear brighter than the background. Also, we use a fixed Gρ for all
the radii. We apply this transform to the original image masked by
the binarization obtained from Section 2.2. This yields an output re-
sponse image. Fig. 1d shows the resultant response image generated
after applying the FRST.
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Fig. 2: Detections results on an image from the data set using: (a) Kofahi’s MS-LoG method, (b) Parvin’s IRV-K method and (c) our method.

2.4. Distance-based non-maximum suppression

Since our image data consists of highly textured cell nuclei, the re-
sponse image generated by carrying out the FRST transform may
sometimes contain multiple small peaks located very close to the true
large peak (to be detected) within the nurse cells (large cells) . Also,
in the densely populated regions where the nuclei appear clustered,
the generated response image may at times contain erroneous small
peaks in addition to the true peaks of the clustered nuclei, roughly
equidistant from each of them. In order to overcome the two dif-
ficulties presented above and to obtain exactly one seed/marker per
nucleus, we perform the following procedure: 1) grayscale dilation
on the response image using a flat structuring element of size δ and
2) non-maximum suppression of the dilated image.

The grayscale dilation of A(x, y) by a flat structuring element
B(x, y) that has zero height everywhere is defined as

(A⊕B) (x, y) = max
{

A(x− x
′
, y − y

′)|(x′
, y

′) ∈ DB

}

(7)

where DB is the domain of the structuring element B and A(x, y)
is assumed to be −∞ outside the domain of the image. From (7)
we can say that a grayscale dilation using a flat structuring element
is a local-maximum operator. Thus, performing such a grayscale di-
lation with a structuring element of size δ gets rid of the small and
erroneous peaks present within the response image. We then ap-
ply the non-maximum suppression on the dilated image. Following
such a procedure, we usually obtain exactly one seed per nucleus.
Fig. 1e shows the detected seeds using the grayscale dilation and
non-maximum suppression overlaid (red) on the original image.

3. EXPERIMENTS AND RESULTS

The images were acquired using the Zeiss LSM 510 Meta confo-
cal microscope. The x- and y-dimensions of each image acquired
is 504×512 pixels, with a sampling interval of 0.31µm in both di-
mensions. We collected an image data set of 157 images consisting
a total of 1386 cells (41 nurse cells and 1345 follicle cells). A care-
ful manual segmentation of all the 157 images was performed and
these segmentations were considered as the ground truth for all sub-
sequent analysis. We compared our cell nuclei detection algorithm
with Al-Kofahi’s multiscale Laplacian-of-Gaussian (MS-LoG) cell
detection algorithm [3] and Parvin’s iterative radial voting scheme
using oriented kernels (IRV-K) [7].

3.1. Algorithm parameter settings

For each image in our data set, in the denoising step the values of
the unknown parameters α, µ, and σ are found by selecting a uni-
form region within the image background. To find a uniform region
within the image background, we consider pixels belonging to the
top quartile of the lowpass-filtered histogram of the original image.
The remaining unknown parameters of our proposed algorithm are
chosen and fixed for all the images in our data set as follows. In the
FRST transform the radius is varied over the range

1 ≤ ρ ≤ 2×max {D(x, y)} (8)

where D(x, y) is the distance transform of the binarized im-
age. The variance of the Gaussian kernel is σ2

ρ = 1

2
ρ for each

ρ ∈ [ρmin, ρmax]. The optimal values for the radial strictness pa-
rameter and scaling factor in FRST and the structuring element size
δ for grayscale dilation were selected using the receiver operating
characteristic (ROC) curves by varying one parameter at a time
while keeping the others fixed and choosing that value of the param-
eter which maximized the area under the curve (AUC). The radial
strictness parameter is γ = 2, and the scaling factor kρ = 10. For
the grayscale dilation, the structuring element size is δ = 11.

3.2. Performance evaluation

The MS-LoG, IRV-K, and our proposed algorithm were run on our
image data set to detect the nurse and follicle cells. We evaluated
these algorithms using two conventional metrics that have been used
for the evaluation of automated cell detection algorithms, namely
coverage measure (Fβ-Score) [6], [9], and pixelwise distance error
E [8].

3.2.1. Coverage measure

The performance metric for comparing the detection accuracy of
all the automated algorithms is obtained using the Fβ-Score, also
known as the coverage measure, defined by

Fβ = (1 + β
2) ·

P · R

(β2 · P) +R
(9)

where P is precision and R is recall, defined by

P =
TP

TP + FP
, R =

TP

TP + FN
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Table 1: PERFORMANCE OF THE DETECTION ALGORITHMS

Methods F-Score Distance Error E
mean s.d.

Our Method 0.825 7.016 1.543

MS-LoG 0.718 8.261 1.639

IRV-K 0.764 7.835 2.048

where TP is the number of true positive detections, FP is the number
of false positive detections and FN is the number of false negative
detections. In this paper we use F1(i.e., β = 1) as this is the most
common choice for this type of evaluation.

3.2.2. Pixelwise distance error

The pixelwise distance error E is the mean pixelwise Euclidean dis-
tance between the centroids of the manually segmented nuclei and
the the corresponding seed locations that were extracted using the
automated segmentation algorithms, averaged over all nuclei and all
images.

3.3. Results

The goal is to maximize the Fβ-score and minimize the pixelwise
distance error E. We present in Table 1 the comparison of these two
metrics for the three automated algorithms, computed over all of our
data set. Table 1 shows that our algorithm has the highest Fβ-score
and the lowest pixelwise distance error E, which indicates that it is
the most accurate of these cell detectors. Fig. 2 shows the detection
results on one image from our data set comparing the three detection
algorithms. Fig. 2 shows that our method is usually able to detect
exactly one seed/marker per nucleus. Also, in areas where the SNR
is low (lower middle region and the lower right corner of the image),
our algorithm is able to detect the cell nuclei with more accuracy
when compared to the other two methods.

4. CONCLUSIONS

Accurate detection of individual cell nuclei in microscopy images is
a challenging task for a manual user, as well as for any automated
cell detection algorithm. Our method combines the MS-VST filter-
ing to suppress the noise, histogram based thresholding to find the
foreground regions and computation of the FRST and a distance-
based non-maximum suppression to find and detect the individual
cell nuclei. Parvin et al. [7] use an iterative radial voting scheme and
Qi et al. [8] use a single-pass voting followed by a mean-shift clus-
tering to detect the cells. Both these methods assume an estimated
average diameter for the cells and uses a fixed value of radial range.
Al-Kofahi et al. [3] takes a different approach by using a multiscale
LoG filtering constrained by an adaptive scale selection in order to
detect the cells. Our approach differs from these earlier methods. We
do not choose a fixed radial range or do an adaptive scale selection
as the key idea of the work presented in this paper is to be able to
detect cells with varying sizes and high texture or fluctuating inten-
sities within them, which was not considered in these earlier studies.
The results demonstrate the improved performance of our algorithm,
according to both the performance metrics considered.
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