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ABSTRACT

A new framework for signal processing is introduced based
on a novel vector product definition that permits a multiplier-
free implementation. First a new product of two real numbers
is defined as the sum of their absolute values, with the sign
determined by product of the hard-limited numbers. This new
product of real numbers is used to define a similar product
of vectors in R". The new vector product of two identical
vectors reduces to a scaled version of the [; norm of the vec-
tor. The main advantage of this framework is that it yields
multiplication-free computationally efficient algorithms for
performing some important tasks in signal processing. An
application to the problem of cancer cell line image classi-
fication is presented that uses the notion of a co-difference
matrix that is analogous to a covariance matrix except that the
vector products are based on our new proposed framework.
Results show the effectiveness of this approach when the
proposed co-difference matrix is compared with a covariance
matrix.

Index Terms— Inner-product space, image classification,
region covariance, co-difference

1. INTRODUCTION

Implementation of signal processing algorithms usually re-
quires a large number of multiplications. It is desirable to
avoid heavy multiplication burden in applications where high
energy consumption is a concern. Toward this end a new
framework for signal processing is proposed by introducing a
novel vector product definition that permits a multiplier-free
implementation. The new vector product uses an operator that
defines the product of two real numbers as the sum of their
absolute values, with the same sign as the ordinary multipli-
cation of two numbers. multiplication is an energy consuming
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funded by the European Community as an IRSES Project 247091. The au-
thors would like to thank B Carr (University of Pittsburgh, PA, USA) for
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operation, especially in ARM-type processors used in tablet
computers and mobile devices. therefore, the new operator al-
lows users to perform image and signal processing in low-cost
processors.

An application of the new vector product is feature extrac-
tion from images. Recently, region covariance approaches [1]
have become quite popular in the fields of image process-
ing and computer vision. Their application includes object
recognition, tracking and classification. Despite their superior
performance, the computational burden of computing a co-
variance matrix for multiple image regions is relatively high.
Recently, a computationally more efficient alternative to the
covaraince matrix, the so-called co-difference matrix was in-
troduced [2] and successfully applied to several apllication
areas [3]. In this paper, firstly, we look more deeply into the
properties of the co-difference operator. Secondly, we apply
the co-difference matrix to a new application area, i.e., the
classification of cancer cell line images and compare its per-
formance with the established covariance matrix method.

In section 2, the proposed multiplier-less operator is de-
fined. In section 3 the application of the proposed multiplier
to an image classification problem is explained and compar-
isons of the proposed region co-difference matrix with the es-
tablished region covariance matrix are shown.

2. VECTOR PRODUCT AND IMAGE FEATURE
EXTRACTION ALGORITHM

In this section, we first review the covariance matrix based
feature extraction. We then introduce the multiplication-free
co-difference matrix approach.

Given an intensity image I of size m x n, we define a
mapping ¢ from image domain to feature domain as

F(z,y) = ¢(I,z,y) M

where each pixel (x,y) is mapped to a set of features and F' is
a feature function computed as a m x n x d array. For a given
subwindow W consisting of N pixels, let (fx)r—=1..., be the

ICASSP 2013



d-dimensional feature vectors extracted from W. Then, the
covariance matrix of region W can be computed as follows

N
(fic — ) (B — ) ()
N 1;

where 1 is the mean of the feature vectors inside the region
W. The covariance matrix is symmetric positive-definite
and of size d-by-d.The computational complexity of the
covariance matrix is relatively large, i.e., O(XN). Computa-
tional cost becomes especially important when a large image
needs to be scanned at different scales. In [2], an efficient
multiplier-less implementation of covariance descriptors,
called co-difference matrices, was introduced. In the co-
difference method, an operator based on additions instead
of the multiplications as in the covariance method is used.
This methodology gives comparable results in regular texture
classification [3]. Let a and b be two real numbers. The new
operator is defined as follows:

a®b = sgn(c) - (|lal + [b]), 3)

where sgn(c) is the sign of ¢ and

{a b
CcC =

a+b
The operator is basically a summation operation but the sign
of the results behaves like the multiplication operation. As a
result, the computational complexity of signal analysis can be
decreased significantly. In our experiments, for a given image
from our dataset, the computation of the region co-difference
matrices for the full feature vector was about 100 times faster
when compared to the region covariance matrix.

We define a new “vector product” of two N-dimensional
vectors x; and x5 in RN as follows:

<X1,Xp >= Z.ll

where 1 (i) and x5 (i) are the i-th entries of the vectors x; and
Xa, respectively. The co-difference matrix can be constructed
from the vector product of two vectors. One can also define
a “’vector product space” analogous to an inner product space
though where our vector product satisfies the requirements
of an inner product except the condition of linearity in the
first argument. We define the multiplication of a vector by a
number a based on (3) and (5) as follows:

ifa-b#0

4
ifa-b=0 @

® z2(i )

a® z(l)
a® z(2)
adx= : ) (0)

0 ® z(N)
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where a is an arbitrary real number. Note that the vector prod-
uct of a vector x with itself reduces to a scaled scaled [; norm
of x as follows:

N
<X, X >= Zw(z)@x(
i=1

We define the co-difference matrix for the image region R as

N
i) =2 |a(i) =2lzll1, ()
=1

1 N
Co=~—) (fk—p)®

N -1
k=1

(e — )" ®)

which can replace the covariance matrix defined in Eq. (2) in
image classification problems.

In practice, fj values can be color pixel values, wavelet
transform coefficients, directional derivatives etc. In the next
section, the codifference matrix is used in cancer cell-line im-
age classification. A new directional correlation parameter
constructed using the new vector product is also used as a
feature parameter in covariance (2) and codifference matrices

.

3. EXPERIMENTAL RESULTS

Background:

The use of the proposed framework in a medical imag-
ing application is now considered. The new multiplication-
free vector product is used in place of the conventional in-
ner product and the efficiency of the proposed approach is
demonstrated by a microscopic image classification example.
Automatic classification of biomedical images is an emerg-
ing field, despite the fact that there is a long history of image
recognition techniques [4].

In molecular biology studies, experimenters deal with a
large number of specimens whose identity have to be checked
recurringly during different stages of the experiment. There-
fore, predicting labels of cancer cell lines in a fast and accu-
rate manner via a pattern classification approach will greatly
enhance biologists’ ability to identify different types of cell
lines without the need to scrutinize each and every micro-
scopic image one by one. Although cell lines are being used
widely as in vitro models in cancer research and drug de-
velopment, mislabeling cell lines or failure to recognize any
contamination may lead to misleading results. Short tandem
repeat (STR) analysis is being used as a standard for the au-
thentication of human cell lines. However, this process takes
a long time and has to be carried out by an expert. Automated
analysis, on the other hand, will provide the scientists a fast
and easy-to-use tool that they can use in their own laboratories
to verify their cell lines.

Modelling of cell morphology has been studied by sev-
eral groups, for example for fission yeast in [5] and for e. coli
bacteria in [6]. To the best of our knowledge there have been
no studies that have used morphology of different human can-
cer cell lines for classification. Eventually, discrimination of



14 classes of biomedical images is achieved, which are all
images of cancer cell lines. The dataset at hand consists of
two major types of cancer cell lines, namely breast cancer and
liver cancer (hepatocellular carcinoma) with 7 sub-classes, re-
spectively. The dataset consists of 280 images, i.e., 20 per
sub-class.

Our approach aims to carry out the automated analysis
by extracting a feature vector from the images. These fea-
ture parameters reflect the large morphological diversity of
the images. The six hepatocellular carcinoma, one hepato-
blastoma and seven breast cancer cell lines were obtained
from the following sources: FOCUS ( [7]), Hep40 ( [8]),
Huh7 (JCRB JCRB0403), Mahlavu ( [9]), PLC (ATCC CRL-
8024), SkHepl (ATCC HTB-52), HepG2 (ATCC HB-8065),
BT-20 (ATCC HTB-19), CAMA-1 (ATCC HTB-21), MDA-
MB-157 (ATCC HTB-24), MDA-MB-361 (ATCC HTB-27),
MDA-MB-453 (ATCC HTB-131), MDA-MB-468 (ATCC
HTB-132), T47D (ATCC HTB-133).

The cell lines were seeded into dishes with 20% con-
fluency and grown at 37°C under 5% COs in standard Dul-
becco’s modified Eagle’s medium (DMEM) supplemented
with 10% FBS, 1% Non-Essential Aminoacid and 1% peni-
cillin/streptomycin (GIBCO Invitrogen) up to 70% conflu-
ency. The authentication of the cell lines was regularly
checked by STR profiling. Cell line images were obtained us-
ing an Olympus CKX41 inverted microscope with an Olym-
pus DP72 camera with a 20x objective and recorded using
20x magnification. Some example images of different cancer
cell line images can be seen in Figure 1.

3.1. Feature Extraction

Microscopic cancer cell line images contain significant
amount of oriented singularities. as a result we used di-
rectional feature parameters constructed using the new vector
product and the directional dula tree complex wavelet trans-
form (DT-CWT) for image representation.

3.1.1. Directional Differences

In order to account for the large morphological variation of
the images in our dataset, we evaluated differences between
pixels in various directions. Consider two pixels p; and p, on
a two-dimensional image I(x,y). Assume that the Euclidean
distance between p; and ps be d and po lies on a line that
has an orientation of angle « with respect to the horizontal
coordinate: I(x 4+ d - cosa,y + d - sina)Let us construct a
vector of size i = 1,2, ..., A as follows:

L, = [1a(1), I4(2), ..., 1o (A4)], )

where I, (i) = I(z+i-fcos(a), y+i- Esin(a)), ais a spec-
ified angle and R is a chosen radius. Then we can perform the
introduced vector product according to (6) as follows:

Sa = I(z,y) © (In — pta), (10
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where 4 is the mean of the vector.

&)

»

(c) HepG2 class class

Fig. 1. Examples of the image classes used in our experi-
ments.

S, values can be used as a directional feature set for classifi-
cation purposes.

3.1.2. Dual-Tree Complex Wavelet Transform

The dual-tree complex wavelet transform (DT-CWT) has
been recently used in various signal and image processing
applications [10], [11], [12] and [13]. It has desirable prop-
erties such as shift invariance, directional selectivity and lack
of aliasing. In the dual-tree CWT, two maximally decimated
discrete wavelet transforms are executed in parallel, where
the wavelet functions of two different trees form an approxi-
mate Hilbert transform pair [14]. Two-dimensional DT-CWT
is also directionally selective in six different orientations. We
use DT-CWT complex coefficient magnitudes in detail sub-
bands as pixel features and compute codifference descriptors.

Let Wi(z,y) and W{™(x,y) denote, respectively, the
real and imaginary part of the 2™ level complex wavelet coef-
ficient at the position (x,y) corresponding to directional detail



subbands at orientation ¢, where 6 € {£15°, +45° +75°}.
The magnitude of the complex wavelet coefficent is then My,
computed for § € {£15°,+£45°, +£75°}. Hence, for each
pixel in the average image I,,(z, y), six complex wavelet coef-
ficient magnitudes My(z,y) representing six different orien-
tations of DT-CWT are extracted. These magnitudes will be
utilized as features in the co-difference and covariance ma-
trix computation for randomly sampled regions of the image

Io(z,y).

3.1.3. Feature vector choice

With

My (x,y) = [Mp, (2,y)... Mgs (2, y)] an
and

Sa(x7 Y) = [Sal (”ﬂ’y) Sas('r7y)] (12)
where 6;...6¢ correspond to the six orientations of DT-CWT
detail subbands {£+15°, £45°, £75°}.c;...as correspond to
the mean of the eight angles of directional difference score

estimation. The feature mapping function employed in this
study is then

S, x,) = Ua(w,y) L] L] Lza| [1yy] Ma(x,y) sa(x,¥)]7,

13)
where |I,;| and |I,.,.| denote the first- and second-order deriva-
tives at (x, y) of the image I,.

In this study, the performance of covariance and co-
difference matrices is compared to their normalised counter-
parts given by

(i j) { o T (14)
i,j) = ij .
EAnCaT otherwise

as in [15].

3.1.4. Foreground-Background Segmentation

The images in our dataset show a large amount of background
pixels. Clearly, the background is not discriminative. There-
fore, we address the issue of segmenting the images into fore-
ground and background before classification. For our dataset,
a simple thresholding scheme is not sufficient for segmenta-
tion, since foreground pixels have a large variance and may
therefore have values higher and lower than the background
pixels. We modeled the image as a mixture of two Gaussians,
representing the foreground and background pixels, respec-
tively. Using this model, an Expectation-Maximization (EM)
algorithm was applied for segmentation. The result is noisy,
so a morphological closing operation was applied, followed
by median filtering.

Since it is necessary to focus on foreground-like regions
in carcinoma cell line images, s analysis square windows are
randomly selected, as in [18], from each image with the two
constraints: the percentage of the foreground pixels in the
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selected region of an image must be above 50 and the vari-
ance of the selected region must exceed an image-dependent
threshold, which is the variance of the whole image.

3.1.5. Classification

For each subwindow, a codifference matrix was computed
using (2) and the feature vector from (13). The image
signature is composed of s co-difference matrices of the
same size. Each class is represented by sx#(images in each
class) covariance matrices. A multiclass support vector ma-
chine (SVM) classifier is trained with an RBF kernel in the
d(d+1)/2-dimensional vector space using the training points.
SVM algorithm is implemented using LIBSVM library [19].
For each test subwindow, the corresonding co-difference de-
scriptor is vectorized and fed into the trained SVM model
for prediction. Therefore, there exist s labels for each mi-
croscopic image corresponding to s subwindows, and the
image in question is assigned the label that gets the majority
of votes among s labels. The above process is carried out for
unnormalised and normalised co-difference matrices.

3.1.6. Results

In our experiments, we compared the co-difference matrix
with the covariance matrix. When both are fed into an SVM,
we get the results listed in Table 1. Clearly, the results are
comparable, with the co-difference matrix outperfroming the
covariance matrix in the normalised case.

Unnormalised Normalised Unnormalised Normalised

Covariance Covariance Codifference Codifference

classification classification classification classification
97.1 97.5 96.4 97.9

Table 1. Classification accuracies (in %) for different classi-
fier inputs.

4. CONCLUSIONS

In this paper, a new framework for signal processing based
on a novel vector product definition that permits a multiplier-
free implementation was introduced. The main advantage of
this framework is that it yields multiplication-free computa-
tionally efficient algorithms for performing some important
tasks in signal processing. This operator can be used to con-
struct a so-called region co-difference matrix that has very
similar properties to the established region covariance ma-
trix. The co-difference matrix was successfully applied to
the problem of classifiying cancer cell line images. The co-
difference matrix-based approach produces slightly better re-
sults than the covariance matrix without performing any mul-
tiplications.
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