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ABSTRACT
Retinal images (RI) are widely used to diagnose a variety
of eye conditions and diseases such as myopia and diabetic
retinopathy. They are inherently characterised by having non-
uniform illumination and low-contrast homogeneous regions
which represent a unique set of challenges for retinal image
registration (RIR). This paper investigates using the expec-
tation maximization for principal component analysis based
mutual information (EMPCA-MI) algorithm in RIR. It com-
bines spatial features with mutual information to efficiently
achieve improved registration performance. Experimental
results for mono-modal RI datasets verify that EMPCA-MI
together with Powell-Brent optimization affords superior ro-
bustness in comparison with existing RIR methods, including
the geometrical features method.

Index Terms— Image registration, principal component
analysis, mutual information, expectation-maximization al-
gorithms, retinopathy.

1. INTRODUCTION

Image registration is an integral procedure in many computer
vision and image processing applications [1], [2]. For ex-
ample, registering medical images in conjunction with image
fusion facilitates disease diagnosis and treatment planning
[3] in many areas of human anatomy. Retinal images (RI)
of a patient need to be registered in order to diagnose eye
conditions and diseases such as myopia, glaucoma and dia-
betic retinopathy [4]. Retinal image registration (RIR) aligns
the vessel structures of the retina to assist in ophthalmology,
particularly in the tracking and analysis of the advancement
of these diseases.

RIR is challenging because the images exhibit spatially
non-uniform contrasts and intensity distributions, as well
as having large homogeneous non-vascular regions. These
collective characteristics can be further compromised by
degradations in various pathologies [4]. Existing intensity
and feature-based RIR techniques are not always robust
to effectively manage RI and have been shown to be de-
pendent on the quality of features extracted, while hybrid

approaches which combine intensity and feature techniques
are not computationally efficient. This paper investigates
the application of a new hybrid-based similarity measure
[5], which incorporates RI spatial information with mutual
information (MI). The corresponding RIR performance is
compared with an alternative current feature-based method
for a series of mono-modal RI test scenarios and found to be
more robust.

The remainder of the paper is organised as follows:
Section 2 presents a review of contemporary RIR tech-
niques, while Section 3 details the EMPCA-MI-based RIR
framework. Section 4 describes the experimental set-up and
analyses the registration performance, with some concluding
comments being provided in Section 5.

2. PREVIOUS WORK

RIR can be broadly classified into feature, intensity and
hybrid based techniques [6]. Feature-based approaches pri-
marily use extracted vessel structure and landmark points
from the RI, while intensity techniques focus solely on
pixel intensity information. They can also be combined
effectively to form hybrid techniques [1]. Utilising fea-
tures in RIR is analogous to manual registration, as key
structures are extracted from the RI such as optical disk
[7], fovea [8] and vascular structural features [9]. An
objective function is constructed from the extracted features,
which is subsequently optimised to secure the best alignment
position of the RI. Dual-bootstrap iterative closest point
[10] and its scale-invariant feature transform variants [11],
use vascular features of small regions to grow a bootstrap
region to accomplish registration. While these methods are
computationally efficient, their registration performance is
very dependent on the quality of segmentation and degree of
overlapping of the extracted features.

The geometrical features method (GFM) [12] is a recent
feature-based method which has been shown to provide
better registration results compared with other existing RIR
techniques. By applying affine moment invariant (AMI) de-
scriptors, GFM performs closed-boundary region extraction
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on vessel segmented RI, before defining a set of control
points, which are both rotation and scale invariant, based upon
the centre of gravity of each region. Three region pairs are
then selected on the basis of their AMI Euclidean distance for
use in the registration mapping.

In contrast, intensity-based techniques use a similarity
measure (SM) such as cross correlation, least mean square
error, phase correlation or MI [13], [14] to compare and
match RI by applying an optimization strategy to maximise
the SM within transformation search space. MI has been
widely adopted in both mono and multi-modal medical image
registration of various parts of the human body. Instead of
having pre-processing steps such as segmentation and feature
extraction, MI establishes a statistical relationship between
the intensity values of the images, though because of the
challenging characteristics of RI, MI does not perform very
effectively [15].

Hybrid approaches combine various aspects of the afore-
mentioned feature and intensity methods, such as for exam-
ple, using extracted vascular structures [16] together with
spatial information as in regional MI [17] and feature neigh-
bourhood MI [18], [19]. While these techniques use a covari-
ance matrix to reduce data complexity [17] instead of high-
dimensional histograms, as the spatial information expands,
it does lead to a commensurate increase in computational
time. EMPCA-MI [5], [20] is a hybrid-based algorithm used
for registering brain computed tomography and magnetic
resonance images by combining spatial information with MI.
It has been shown to exhibit superior robustness in its registra-
tion performance in the presence of non-uniform intensity and
noise, and given the innately challenging characteristics of RI
this provided the impetus to investigate applying EMPCA-MI
[5] within a RIR context.

3. PROPOSED REGISTRATION FRAMEWORK

3.1. Principles of Retinal Image Registration (RIR)

RIR consists of aligning a reference image IR with a sensed
image IS in a multi-step process [2]: i) transforming the
coordinates of IS in a known reference space; ii) generating
a new interpolated image I?S in the reference space; iii)
comparing I?S with the reference image IR using a predefined
SM; and iv) optimizing transformation µ to achieve the best
alignment at µreg . This can be generalised as a maximisation
problem:

µreg = arg max
µ

SM(IR, µ(IS)) (1)

where µreg gives the best registration parameter settings.
The interpolation method used for transforming IS plays a
central role in RIR, since interpolation artefacts can consid-
erably impact upon SM performance leading to increased
registration errors [2].

3.2. EMPCA-MI as a Similarity Measure

EMPCA-MI [5], [20] is a recently introduced SM for im-
age registration that efficiently incorporates spatial informa-
tion together with MI without incurring high computational
overheads. As illustrated in the example in Fig. 1(a), it
comprises three steps involving pre-processing (image data
rearrangement), EMPCA and MI calculation. Note the block
colours in Fig. 1(a) symbolise pixels for pre-processing and
not the actual pixel itself. IR and IS are both pre-processed
(Step I) in vector form for a given neighbourhood radius r, so
the spatial and intensity information is preserved. The first P
principal components XR and XS of the respective reference
and sensed images are then iteratively computed by EMPCA
in Step II, instead of solving the covariance matrix. The final
MI value is calculated between XR and XS in Step III, with a
higher MI value meaning the two images are better aligned. In
the EMPCA-MI algorithm, only the first principal component
is considered, i.e., P=1 since this is the direction of highest
variance and represents the most dominant feature. EMPCA-
MI can be formally expressed as:

EMPCA−MI(IR, IS) =
∑

XR,XS

p(XR, XS) log
p(XR, XS)

p(XR), p(XS)

(2)
where p(XR) and p(XS) are the individual probabilities

of XR and XS respectively, while p(XR,XS) is their joint
probability.

3.3. Transformation and other registration settings

RI acquisition inherently leads to a distortion between IS and
IR which can be modelled as a similarity transformation [12],
[18], [19]. This special form of the global affine transform
[21] represents RI distortion as either eye or camera (x-
y translational and rotational θ) motion, with magnification
changes due to using different equipment or the motion in
the direction of the optical axis being modelled as a uniform
scaling S [22]. These four parameters can be formulated as:

[
x′

y′

]
=

[
tx S cos θ −S sin θ
ty S sin θ S cos θ

]1
x
y

 (3)

Where (x, y) and (x′, y′) are the original and transformed
pixel positions respectively. The notation µ (tx, ty , θ, S)
is adopted to represent the four key registration parameters:
the x translation, the y translation, the rotation θ and scaling
factor S of transform µ. To automatically determine these
parameters, Powell’s multidimensional direction set method
is applied along with Brent optimization [23] for line min-
imization, because this provides a local search which is
accurate, fast and particularly suited to RIR [2].

4. EXPERIMENTAL SET-UP AND RESULTS

To evaluate the RIR, the clinical dataset DRIVE [24], from
a Dutch diabetic retinopathy screening program was used.
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Fig. 1. (a) Example of EMPCA-MI computation using a RI pair of size 10 x 10 pixels (with P=1 and r=1). (b) 2D EMPCA-
MI trace of the y translation for different interpolators. (c) EMPCA-MI traces and the corresponding colour bar for Bicubic
interpolation.

This comprises twenty colour images with spatial resolution
768 by 584 pixels and 45◦ circular fields of view. All RI
contain non-uniform illumination and low contrast, which
accentuates the registration challenge. Since reference images
were not available for this database, they were simulated to
establish the requisite ground truth, by mis-registering them
by a known transformation µgrd, with the original images
considered as the sensed images. RIR was undertaken on
only the green channel, since this has the highest contrast
compared with the red and blue channels, which can of-
ten be saturated and contain acquisition noise [12]. For
optimization, the tolerance thresholds for the Powell and
Brent criteria were set to 10−5 and 10−3 respectively [2],
with the maximum number of iterations being 200. As
delineated in Section 2, GFM [12] is one of the leading
feature-based solutions, so this was chosen as the comparator
in the following RIR experiments.

4.1. Results Discussion

As alluded in Section 3.1, interpolation plays key role in
the registration process and can significantly perturb the
performance of a SM. Before analysing the performance of
EMPCA-MI for RIR, the influence of different interpolation
techniques including nearest neighbour (NN), Bilinear and
Bicubic on EMPCA-MI was examined. Various simulation
runs for EMPCA-MI using different Image Pairs from the
dataset [24] were performed using Bicubic, Bilinear and NN
interpolation. It was observed that Bicubic interpolation con-
sistently provided the lowest registration error as evidenced in
Fig 1(b), which shows the respective EMPCA-MI traces for
Image Pair 3, with µgrd=(0, 10, 0, 1) for all three interpo-
lators. As both the Bilinear and NN interpolators generated
higher errors, the Bicubic interpolator was considered for the
various RIR experiments. Fig. 1(c) shows the EMPCA-MI
results for Image Pair 6, with µgrd=(6, 6, 50, 1.2) where all
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Image Scenario 1 Scenario 2 Scenario 3 Scenario 4
Pair µgrd=(0, 0, 5◦, 1) µgrd=(0, 0, 60◦, 1) µgrd=(5, 5, 20◦, 2.8) µgrd=(8, 9, 45◦, 0.8)
No. ∆tx, ∆ty , ∆θ, ∆S ∆tx, ∆ty , ∆θ, ∆S ∆tx, ∆ty , ∆θ, ∆S ∆tx, ∆ty , ∆θ, ∆S

GFM [12] EMPCA-MI GFM [12] EMPCA-MI GFM [12] EMPCA-MI EMPCA-MI
P=1, r=1 P=1, r=1 P=1, r=1 P=1, r=1

1 0, 0, 0.02, 0 0, 0, 0.01, 0 0, 0, 0.01, 0 0, 0, 0.01, 0 0, 0, 0.038, 0.001 0, 0, 0.021, 0.001 0, 0, 0.054, 0.001
2 0, 0, 0.05, 0 0, 0, 0.03, 0 0, 0, 0.01, 0 0, 0, 0.01, 0 0, 0, 0.026, 0.002 0, 0, 0.073, 0.000 0, 0, 0.137, 0.008
3 0, 0, 0.62, 0 0, 0, 0.60, 0 0, 0, 0.02, 0 0, 0, 0.16, 0 0, 0, 1.227, 0.000 0, 0, 1.425, 0.021 0, 0, 2.268, 0.013
4 0, 0, 0.02, 0 0, 0, 0.01, 0 0, 0, 0.09, 0 0, 0, 0.06, 0 0, 0, 0.052, 0.005 0, 0, 0.021, 0.001 0, 0, 0.057, 0.006
5 0, 0, 0.10, 0 0, 0, 0.08, 0 0, 0, 0.17, 0 0, 0, 0.08, 0 0, 0, 0.138, 0.075 0, 0, 0.102, 0.013 0, 0, 0.037, 0.006
6 0, 0, 0.00, 0 0, 0, 0.00, 0 0, 0, 0.00, 0 0, 0, 0.01, 0 0, 0, 0.170, 0.002 0, 0, 0.091, 0.006 0, 0, 0.027, 0.002
7 0, 0, 0.05, 0 0, 0, 0.04, 0 0, 0, 0.02, 0 0, 0, 0.01, 0 0, 0, 0.045, 0.013 0, 0, 0.079, 0.009 0, 0, 0.124, 0.005
8 0, 0, 0.11, 0 0, 0, 0.08, 0 0, 0, 0.12, 0 0, 0, 0.11, 0 0, 0, 0.070, 0.003 0, 0, 0.063, 0.006 0, 0, 0.177, 0.009
9 - 0, 0, 0.05, 0 - 0, 0, 0.15, 0 - 0, 0, 0.158, 0.010 0, 0, 0.054, 0.003

10 0, 0, 0.02, 0 0, 0, 0.01, 0 0, 0, 0.04, 0 0, 0, 0.03, 0 0, 0, 0.006, 0.010 0, 0, 0.002, 0.003 0, 0, 0.146, 0.001

Table 1. Registration errors for four scenarios of retinal image pairs. µgrd is ground truth transform and ∆tx, ∆ty , ∆θ, ∆S are
registration errors for the similarity transformation.

four parameters of the similarity transformation are used for
mis-registration. This highlights the smooth convergence of
EMPCA-MI to a single solution verifying the appropriateness
of applying Powell-Brent optimisation to the challenge of
RIR.

Table I displays the comparative registration results for
four different scenarios of ten Image Pairs for both GFM
and EMPCA-MI. In Scenarios 1 and 2 only one registration
parameter varies i.e., rotation θ=5◦ and θ=60◦ with the
other parameters being fixed, while in Scenarios 3 and 4,
all four registration parameters vary, including S to reflect
the RI which have been acquired using different equipment
magnifications. Transform parameter settings for the first
three scenarios were chosen as in [12], to enable a direct
comparison between the performance of EMPCA-MI and
GFM. For example, the Image Pair 5 registration error in
Scenario 3 for GFM and EMPCA-MI is respectively (0, 0,
0.138, 0.075) and (0, 0, 0.102, 0.013) for the ∆tx, ∆ty ,
∆θ, ∆S parameters. This reveals that EMPCA-MI afforded
superior and more robust registration performance compared
to GFM in variable contrast and illumination conditions.
While only 10 of the 20 Image Pairs are displayed in Table
1, the recurring observation regarding the robust RIR per-
formance of EMPCA-MI applies also to the other 10 pairs,
which were all correctly registered. It is especially notable to
highlight that EMPCA-MI successfully registered Image Pair
9, whereas GFM failed to converge to a RIR. The reason for
this is that the closed boundary regions extracted from Image
Pair 9 have similar shapes and their corresponding AMI are
very close to each other, so GFM was unable to register them
successfully. In contrast, as EMPCA-MI does not rely on
feature extraction, but on spatial features and MI, it is more
robust in being able to register this test Image Pair.

Fig. 2 shows an example of the qualitative RIR results of
Image Pair 9 for Scenario 4, using checkerboard overlaying

Fig. 2. Checkerboard overlay [2] illustration of Image Pair 9.

method [2], with IR and IS in light and dark gray respectively.
The continuity of the vessel structures is palpable to validate
that EMPCA-MI has effectively registered the RI.

5. CONCLUSION

This paper has applied a new similarity measure using Expec-
tation Maximization for Principal Component Analysis with
Mutual Information (EMPCA-MI) to successfully achieve
retinal image registration (RIR). Retinal images are espe-
cially challenging because of their inherent characteristics
of low contrast, non-uniform illumination and large number
of homogeneous regions. Quantitative results for mono-
modal clinical datasets confirm EMPCA-MI consistently out-
performed the geometric features method in terms of RIR
robustness, while concomitantly providing analogous regis-
tration accuracy.
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