
FAST ABERRANT CRYPT FOCI SEGMENTATION ON THE GPU

Marco Martins⋆ Gabriel Falcao⋆ Isabel N. Figueiredo†

⋆ Instituto de Telecomunicações, Department of Electrical and Computer Engineering
University of Coimbra, 3030-290 Coimbra, Portugal

†CMUC, Department of Mathematics
University of Coimbra, 3001-501 Coimbra, Portugal

ABSTRACT

Aberrant crypt foci (ACF) are thought to be one of the earli-
est manifestations of colorectal cancer (CRC). We propose a
parallel signal processing algorithm (based on a fast approach
of the active contour without edges model) to segment in vivo
ACF, from stained endoscopic images, to serve as a diagno-
sis/prognosis auxiliary. In order to tackle this challenge, we
successfully overcame several obstacles, involving the adap-
tation of the algorithm and data structures to a parallel envi-
ronment. This algorithm was developed using the compute
unified device architecture (CUDA) interface, which allows
programming the graphics processing units (GPU). We show
that it is possible to process four frames of 1 Mega pixel im-
ages per second using a conventional GPU. The GPU speeds
up the in vivo ACF segmentation more than 40×, regarding
to CPUs, and paves the way for real-time segmentation.

Index Terms— Aberrant Crypt Foci, Segmentation,
CUDA, GPU, Colorectal Cancer

1. INTRODUCTION

Colorectal cancer (CRC) is one of the most frequent types of
malignant tumours. In the United States it is the third most
common fatal malignancy [1], and in Europe it is the sec-
ond most frequent malignant disease [2]. Nevertheless, the
prevention of CRC can be done more efficiently since its pro-
gression takes over 10-20 years, allowing sufficient time to
detect the disease before it poses a clinical threat [3].

Aberrant crypt foci (ACF) are considered an earlier man-
ifestation of CRC [4, 5]. ACF can be identified in vivo
with magnification chromoscopic endoscopy [6]. Present
methods used for evaluating ACF patterns by doctors, are
rather subjective and not standardized. They rely on direct
medical observation, due to the absence of computerized
methods. Therefore, for doctors, a reliable computerized and
fast method would be very helpful for evaluating ACF’s pat-
tern images, allowing a quicker and more accurate diagnosis,
which could eventually be used to standardize the evaluation.
This can be achieved by developing new systems based on

image processing methods [7], that ideally would work in
real-time.

Although parallel computing on GPU is a relatively new
technology, it can surpass the central processing unit (CPU)
computational power by many times and is used in a vast set
of compute intensive applications that range from inference
calculation [8] to contour detection [9, 10, 11, 12, 13, 14].
In this paper, we propose a parallel algorithm that suits fast
ACF segmentation on GPUs. We show how the particulari-
ties of this signal processing algorithm can be accommodated
in order to exploit multi-thread based execution on many-core
GPUs [15], avoiding the use of divergent instructions, mini-
mizing data transfers between different levels of the system’s
memory hierarchy, and coalescing data accesses. We con-
clude that an algorithm which outputs several frames per sec-
ond is achievable on conventional GPUs. This can contribute
to an earlier diagnosis of a large group of the population, and
thus has the potential to apply signal processing methods to
enhance the performance of human healthcare systems.

2. BACKGROUND, MOTIVATION AND
SEGMENTATION MODEL

In 1987 Bird identified the first ACF [16], and since then
they have been a case of study. Bird also hypothesized that
they were possible precursors of CRC [5], and future studies
supported that hypothesis [17]. When observed with stereo-
microscopy and stained with methylene blue, the ACF are
larger, thicker and darker staining than normal crypts [16],
having noticeable oval, circular, and dilated or slit-like irreg-
ular openings [18].

Although we can find segmentation models proposed in
the literature, a GPU implementation of any of these models
would bring the processing of medical images to near real-
time. In this paper we focus on a particular segmentation
variational model for which we develop a new GPU-aware
approach. The segmentation model is described in [19] and
consists of an optimization of the active contour without
edges model of Chan and Vese [20]. It corresponds to the
following minimization problem:

1113978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

min
u,v

{

TVg (u) +
1

2θ
‖u− v‖

2
L2

+

∫

Ω

λr (x, c1, c2) v + αυ (v) dx

}

,

(1)

where r (x, c1, c2) = (c1 − (x))
2
− (c2 − I (x))

2 represents
the fitting term, with I the given image, and c1/c2 the aver-
ages of I , inside/outside the segmentation curve (c1 and c2
are updated during the iterative procedure, starting with ini-
tial given guesses). The unknown u is the two-phase piece-
wise constant segmentation of I , the unknown v is an auxil-
iary function (forced to be equal to u), TVg (u) represents the
total variation of u, weighted by an edge detection function
g, θ > 0 is a fixed small parameter, λ > 0 is a constant pa-
rameter, weighting the fitting term, αυ (v) is a term resulting
from a reformulation of the model, as a convex unconstrained
minimization problem (see theorem 3, in [19]), and finally Ω

is the image (or pixel) domain.
The problem in (1) can be computed by minimizing with

respect to u and v separately, as follows:
• v being fixed, u is a solution of:

min
u

{

TVg (u) +
1

2θ
‖u− v‖2L2

}

. (2)

• u being fixed, v is a solution of:

min
v

{

1

2θ
‖u− v‖

2
L2 +

∫

Ω

λr (x, c1, c2) v+αν (v) dx

}

. (3)

Using a dual formulation of the TV (total variation) norm,
the solution of (2) is defined by (see proposition 3, in [19]):

u = v − θ div p, (4)

where div denotes the divergent operator and p =
(

p1, p2
)

verifies

g (x)∇ (θ div p− v)− |∇ (θ div p− v)| p = 0. (5)

Moreover, the solution of (3) is (see proposition 4, in [19]):

v = min
{

max {u (x) − θλr (x, c1, c2) , 0} , 1
}

. (6)

Additionally, the solution p in (5) can be solved by a fixed
point method:

p0 = 0, pn+1 =
pn + δt∇

(

div (pn)− v
θ

)

1 + δt
g(x)∇

(

div (pn)− v
θ

) , (7)

where ∇ is the gradient operator.
Thus the algorithm leading to the solution of (2), consists

in iterating (7) and (6) successively (the number of iterations
is hereafter denoted by iterno). The constants c1 and c2 in the
fitting term are updated periodically (a pre-defined number of
iterations, hereafter called updtFT) using the formula:

r (x, c1, c2) = (ûin − I (x))2 − (ûout − I (x))2 , (8)

where ûin and ûout are the averages of f , in the current seg-
mented regions {x ∈ Ω : u (x) ≥ 0.5} and {x ∈ Ω : u (x)
< 0.5}, respectively, and {x ∈ Ω : u (x) = 0.5} is the seg-
mentation curve for the current iterate u.

3. PROPOSED PARALLEL ALGORITHM FOR GPU

The GPU is a highly parallel, multi-threaded, many-core
processor [21] that largely surpasses CPUs in arithmetic
throughput and memory bandwidth. Therefore, GPUs suit
the speedup of a diversity of data-parallel signal process-
ing applications [21], when properly orchestrated by a host
system, typically a CPU. The compute unified device archi-
tecture (CUDA) is a programming interface that allows the
programmer to write in a transparent way, scalable parallel C
code [21] on GPUs.

When the host launches a kernel, the GPU device executes
a grid of thread blocks, where each block has a predefined
number of threads executing the same piece of code (figure 1
depicts this hierarchy). Organized in groups of 32 threads (a
warp), they execute synchronously and are time-sliced among
the stream-processors of each multiprocessor.

3.1. Parallelization strategy of the algorithm

The algorithm described in section 2 was implemented using
the CUDA toolkit to execute on the GPU, exploiting the mas-
sive use of thread- and data-parallelism.

Coalesced accesses and the use of shared memory: In
a GPU, accesses to global memory are time consuming op-
erations and may represent a bottleneck in the desired per-
formance. Instead, coalesced accesses should be performed
whenever necessary. They imply data in global memory to
be contiguously aligned, so that all accesses in a warp are
done concurrently, with thread Tk accessing pixel Pk. Also,
we maximize the use of fast shared memory, which is tightly
coupled to the processors. As depicted in figure 2, we store
512 data elements in shared memory for faster processing.

Fig. 1. The image, the grid of size (Bx,By) which computes
the results for the image, the blocks of size (Tw,Tz) with
threads, calculating the result for each pixel.

1114

Fig. 2. Image in global memory and a representative subset
of pixels stored in shared memory to perform the fast parallel
reduction for mean calculations in (8). Each thread reduces a
portion of data to be processed, ensuring data correctness.

Parallel active contour without edges detection model:
The most intensive subkernel to process performs the update
of u as indicated in (4). This operation involves the update
of pn+1 regarding to iteration n as shown in (7) and is per-
formed by each thread over a single pixel. Finite difference
methods are used to calculate the mathematical divergence
and gradient operators. We were able to exploit a high level
of thread-based parallelism since each thread processes a dif-
ferent pixel, obtaining a global high throughput. The other
two subkernels compute, respectively, the fitting term (8) and
v as defined in (6). Altogether, these computations are iter-
ated a predefined number of times to find the solution of the
minimization problem in (1).

Avoiding divergent instructions: In order to maximize the
full thread-level parallelism available on the GPU, the algo-
rithm avoids whenever possible the usage of divergent in-
structions (for example by unrolling a loop), which otherwise
serializes the algorithm, since threads follow different exe-
cution paths that cannot be executed simultaneously. How-
ever, the use of divergent instructions could not be completely
avoided due to the border cases of the image, which penalizes
parallel execution performance on the GPU due to the need of
using conditional instructions.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

The program was developed using CUDA driver 5.0 with
runtime 4.2 and the C/C++ code compiled with GCC-4.4.7.
The host has an Intel Core i7 950 @ 3.07GHz and runs the
GNU/Linux kernel 3.2.1-030201-i7. The device consists of a
GPU Geforce GTX 680 with 1536 CUDA cores.

4.2. ACF segmentation on the Geforce GTX 680

Using as input the grayscale images presented in figure 3 (a)
and (c), the corresponding segmentation results are shown in

Figure 3 Figure 4
(b) (d) D L C R

λ 10
−1

10
−1

10
−1

10
−4

10
−2

10
−1

θ 1 1 1 10
−1 1/2 1

β 10
−4

10
−4

10
−4

1 10
−2

10
−4

δt 1/8 1/8 1/8 1/32 1/16 1/8
iterno 30 30 500 50 200 500

updtFT 30 10 5 100 30 5

Table 1. Parameters for the different images, with L, C and
R denoting left, center and right, respectively, and D default
value. The parameter λ is used to weight the fitting term, θ
is a small constant forcing v to approach u, β is a weight in
the edge detection function g, δt is the temporal step, iterno
is the number of iterations for the minimization process and
updtFT is the iterations period to update the fitting term.

figure 3 (b) and (d). Here, we can observe some false posi-
tives, nevertheless, the ACFs are segmented in an acceptable
way, successfully identifying the crypt orifices, which is ex-
tremely relevant for the physicians (full size figures 3 and 4
are available at http://www.co.it.pt/acfgpu).

A study was carried out to select optimal values for the
constant parameters of the model. The influence of each pa-
rameter in the segmentation is depicted in figure 4, and the
used values are shown in table 1. The segmentation is improv-
ing from left to right (figures on the right side show less false
positives). Nevertheless, it is visible a segmentation curve
that delimits an open region, which is a false positive result-
ing from the two-phase nature of the model. We noticed that
the number of iterations can be lower for small images and
still achieve good results, but should be higher for larger im-
ages in order to obtain a superior segmentation quality. In the
latter case, typically more common in real systems, it makes
even more sense executing on the GPU.

For measuring the performance of the parallel algorithm
on the GPU, execution times were obtained for different input
data sizes and compared with MATLAB and sequential C im-
plementations running on CPUs. Figure 5 shows a speedup
of 43× regarding to sequential C and of 161× regarding to
Matlab for a 1 Mega pixel image. These speedups increase to
45× and 168× respectively, for a 4 Mega pixel image.

(a) (b) (c) (d)

Fig. 3. (a) and (c) depict input images; (b) and (d) show output
segmented images (the parameters are indicated in table 1).

1115

(a) Original image of a stained colon surface with an ACF

(b) Varying λ

(c) Varying θ

(d) Varying β

(e) Varying δt

(f) Varying iterno

(g) Varying updtFT

Fig. 4. Study of segmentation parameters, by changing one of
its values and fixing the others, with D values from table 1, for
an endoscopic image with ACF, and size 1182 × 714 pixels.
(see L, C and R in table 1 for the corresponding values).

5. RELATED WORK

Although specific ACF segmentation on GPUs is, to the best
of our knowledge, inexistent, there is active contour related

Fig. 5. Execution time of the algorithm for the various in-
put data sizes and for the 3 different implementations, using
iterno = 500 and updtFT = 5.

work done on GPUs. Zoltan et al. [9] implemented a color
diffusion model as external energy for the active contour,
which has the advantage of being able to process color im-
ages. Ali and Madabhushi [14] developed a multiple level
set-based hybrid active contour framework which is capable
of segmenting overlapped objects. While He and Kuester [13]
used a gradient vector flow approach to compute the external
force of the active contour, Li et al. [10] presented an optimal
parametric active contour method based on Fourier descrip-
tors, and Gilles et al. [11] developed a statistical region-based
active contour model. In all these works the used algorithms
have the initial contour problem. Pryor et al. [12] used a de-
terministic observer model based on nonparametric implicit
curves that applies to dynamically evolving contours, which
is not a requisite in ACF segmentation.

Our contribution to the ACF segmentation problem is a
parallel approach based on a fast minimization of the active
contour model [19], with the initialization conditions and lo-
cal minima problems eliminated. Also, we propose a sig-
nal processing GPU approach that shows very fast execution
times and suits the development of real-time systems. Clearly
this can lead to superior/faster diagnosis accuracy and hope-
fully to the increase of human life expectancy.

6. CONCLUSION

We proposed a parallel algorithm for segmenting ACFs on
GPUs that it is capable of processing four 1 Mega pixel
frames per second. We analysed the influence of different
parametrization levels using the GPU, which allowed a faster
calibration of the algorithm. Consequently, we were able
to propose optimal segmentation configurations. These re-
sults encourage the development of a real-time procedure to
increase the success level of in vivo diagnosis.

Future work will incorporate a post-processing method to
remove open regions from the segmentation result. Addition-
ally, we are developing new algorithms capable of segmenting
very small polyps that are equally CRC precursors.

1116

7. REFERENCES

[1] American Cancer Society, “Colorectal cancer facts &
figures 2011-2013,” Tech. Rep., Atlanta: American
Cancer Society, 2011.

[2] M. Zavoral, S. Suchanek, F. Zavada, L. Dusek, J. Muzik,
B. Seifert, and P. Freic, “Colorectal cancer screening in
Europe,” World J Gastroenterol, vol. 15, no. 47, pp.
5907–5915, 2009.

[3] E. T. Hawk, A. Umar, and J. L. Viner, “Colorectal cancer
chemoprevention — an overview of the science,” Gas-
troenterology, vol. 126, no. 5, pp. 1423–1447, 2004.

[4] F. A. Orlando, D. Tan, J. D. Baltodano, T. Khoury, J. F.
Gibbs, V. J. Hassid, B. H. Ahmed, and S. J. Alrawi,
“Aberrant crypt foci as precursors in colorectal cancer
progression,” Journal of Surgical Oncology, vol. 98, no.
3, pp. 207–213, 2008.

[5] R. P. Bird, E. A. McLellan, and W. R. Bruce, “Aberrant
crypts, putative precancerous lesions, in the study of the
role of diet in the aetiology of colon cancer,” Cancer
surveys, vol. 8, no. 1, pp. 189–200, 1989.

[6] D. P. Hurlstone, S. S. Cross, A. J. Shorthouse, S. Brown,
I. Adam, and A. J. Lobo, “Rectal aberrant crypt
foci identified using high-magnification-chromoscopic
colonoscopy: biomarkers for flat and depressed neopla-
sia,” The American Journal of Gastroenterology, vol.
100, no. 6, pp. 1283–1289, 2005.

[7] I. N. Figueiredo, P. N. Figueiredo, G. Stadler, O. Ghat-
tas, and A. Araújo, “Variational image segmentation for
endoscopic human colonic aberrant crypt foci,” IEEE
Transactions on Medical Imaging, vol. 29, no. 4, pp.
998–1011, 2010.

[8] G. Falcao, V. Silva, L. Sousa, and J. Andrade, “Portable
LDPC decoding on multicores using OpenCL,” IEEE
Signal Processing Magazine, vol. 29, no. 4, pp. 81–109,
2012.

[9] G. Zoltan, D. Stoica, and M. Ivanovici, “Colour diffu-
sion model acceleration on GPUs,” International Con-
ference on Optimization of Electrical and Electronic
Equipment, pp. 1429–1435, 2012.

[10] T. Li, A. Krupa, and C. Collewet, “A robust parametric
active contour based on fourier descriptors,” IEEE In-
ternational Conference on Image Processing, pp. 1037–
1040, 2011.

[11] P. Gilles, S. Domas, R. Couturier, and N. Bertaux, “GPU
implementation of a region based algorithm for large
images segmentation,” IEEE International Conference
on Computer and Information Technology, pp. 291–298,
2011.

[12] G. Pryor, T. ur Rehman, S. Lankton, P. A. Vela, and
A. Tannenbaum, “Fast optimal mass transport for dy-
namic active contour tracking on the GPU,” IEEE Con-
ference on Decision and Control, pp. 2681–2688, 2007.

[13] Z. He and F. Kuester, “GPU-Based Active Contour Seg-
mentation Using Gradient Vector Flow,” in Proceedings
of the Second international conference on Advances in
Visual Computing - Volume Part I, Berlin, Heidelberg,
2006, ISVC’06, pp. 191–201, Springer-Verlag.

[14] S. Ali and A. Madabhushi, “Graphical processing unit
implementation of an integrated shape-based active con-
tour: Application to digital pathology,” Journal of
Pathology Informatics, vol. 2, no. 2, pp. 13, 2011.

[15] T. P. Chen and Y.-K. Chen, “Challenges and opportu-
nities of obtaining performance from multi-core CPUs
and many-core GPUs,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 2009,
pp. 613–616.

[16] R. P. Bird, “Observation and quantification of aberrant
crypts in the murine colon treated with a colon carcino-
gen: Preliminary findings,” Cancer Letters, vol. 37, no.
2, pp. 147–151, 1987.

[17] S. J. Alrawi, M. Schiff, R. E. Carroll, M. Dayton, J. F.
Gibbs, M. Kulavlat, D. Tan, K. Berman, D. L. Stoler,
and G. R. Anderson, “Aberrant crypt foci,” Anticancer
Research, vol. 26, no. 1A, pp. 107–119, 2006.

[18] D. G. Adler, C. J. Gostout, D. Sorbi, L. J. Burgart.,
L. Wang, and W. S. Harmsen, “Endoscopic identifica-
tion and quantification of aberrant crypt foci in the hu-
man colon,” Gastrointestinal Endoscopy, vol. 56, no. 5,
pp. 657–662, 2002.

[19] X. Bresson, S. Esedoglu, P. Vandergheynst, J. Thiran,
and S. Osher, “Fast global minimization of the active
contour/snake model.,” Journal of Mathematical Imag-
ing and Vision, vol. 28, no. 2, pp. 151–167, 2007.

[20] T. Chan and L. Vese, “Active Contours Without Edges,”
IEEE Transactions on image processing, vol. 10, no. 2,
pp. 266–277, 2001.

[21] “NVIDIA CUDA C programming guide,” NVIDIA De-
veloper Technology, 2012.

1117

