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ABSTRACT

Bimodal medical imaging, which combines two non-invasive tech-
niques to explore two different aspects (e.g. function and morphol-
ogy) of an organ, has emerged as a major clinical imaging modality
nowadays. The gained information as compared to single modality
imaging is overwhelmingly useful for diagnostics and therapy plan-
ning. Up to now all bimodal techniques make use exclusively of
primary radiation. In this work, we describe a new bimodal imaging
concept based solely on the exploitation of scattered radiation. Fol-
lowing a presentation of its theoretical basis, we discuss the mod-
elings of measurements and inversion formulae used for image re-
construction. Thus an attenuation and electron density correction
algorithm inspired of the Iterative Pre-Correction algorithm (IPC) is
proposed. Simulation results demonstrate convincingly the feasibil-
ity and efficiency of this new bimodal imaging modality.

Index Terms— Biomedical imaging, Computed tomography, Re-
construction algorithms.

1. INTRODUCTION

At present, we observe that three major medical imaging modalities
(Computed tomography : CT, Single-photon emission computed to-
mography : SPECT, Positron emission tomography : PET) make use
only of primary (or non scattered) radiation beams whereas scattered
radiation is considered as noise and then is routinely eliminated or
at least compensated for [1]. Thus, it is natural to ask whether a bi-
modal imaging system can be built on the exploitation of scattered
radiation. Imaging with scattered radiation has a long story since it
has been initiated in the 50’s, at a time when research on SPECT,
PET and CT imaging has just started. The central idea of scattered
radiation imaging is based on Compton scattering effect. Different
approaches were suggested by various groups and the concept of
Compton scatter tomography (CST) has emerged as a key idea for
building a CST scanner, which could be as efficient as primary radi-
ation scanners [2, 3, 4, 5, 6]. The concept was further promoted by
a pioneering work performed by Norton in 1994.

The mathematical basis of CT, SPECT and PET imaging is con-
tained in the classical Radon transform. Image formation is de-
scribed by straight line integrals respectively of the attenuation map,
the gamma-ray activity density and the positron activity density of
the object under investigation. However scattered radiation imaging
requires more general Radon transforms. For CST by transmission,
the data basically consists of integrals of the matter electron density
along circular arcs joining an external point source to a point-like
detector. Each circular arc corresponds to a given detected energy,
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which through the Compton relation means a fixed scattering angle.
This is why these circular arcs are called isogonic arcs. One deals no
longer with the classical Radon transform but with the circular-arc
Radon transform (CART). Fortunately, Cormack has already derived
the inverse transform [7, 8] whereas Norton has given a variant of
the inverse formula [9]. We shall use the Norton CST modality as
one component of our bimodal scatter imaging system. The second
imaging component is the V-line emission imaging (VEI). The ob-
ject is now converted into a radiating object, for example by injection
of a radiopharmaceutical, and restricted to a two-dimensional slice.
Then using a collimated gamma camera, the data collected at each
pixel for a given scattered energy is proportional to the sum of all the
integrals of matter gamma-ray activity density along V-lines (broken
straight lines with the form of a capital letter V standing vertically),
which have an axis parallel to the collimator axis and an opening
angle given by the detected energy through the Compton relation.
In fact, the V-line is just a two-dimensional cone and the relevant
Radon transform is called the Compounded V-line Radon transform
(CVRT) [10]. As the CVRT is shown to be invertible, we can com-
bine VEI and Norton CST into an original bimodal scatter imaging
system, see Fig. 1.
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Fig. 1. Concept of a novel bimodal system

In general the two components of a bimodal imaging system de-
liver complementary information. For example, in a SPECT/CT sys-
tem the attenuation map obtained by CT scanning is used to cor-
rect the SPECT data prior or during the reconstruction of the ac-
tivity density of the object. In the proposed new scatter radiation
bimodal imaging system, the object electron density is obtained by
Norton’s CST, from which the object attenuation map is deduced.
These maps (attenuation and electron density) are then used to cor-
rect the VEI data before correctly reconstructing the object activity
density. Finally, making available the two characteristics of matter,
namely its electron density and its gamma-ray activity density, mor-
phologic and functional information can be deduced simultaneously
by this bimodal imaging system. To demonstrate the performance
of this imaging system, it is necessary to implement the algorithms
and evaluate them using numerical simulations of various phantoms.
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Fig. 2. Principle of Norton’s CST modality (a) and of the VEI (b), their associated Radon transform and parameters setup. (c) Different
reconstructions of the electron density map, attenuation map and activity map for different SNR. Reconstructions are obtained using the
proposed correction algorithm and in the presence of a Poisson noise process.

Section 2 recalls the mathematical modeling of image formation in
Norton’s CST (by CART) and in VEI (by CVRT) with the inversion
formulae. Then we establish a more realistic modeling by taking
into account scattering and attenuation factors in section 3. In sec-
tion 4, we present the correction algorithm for both Norton’s CST
and VEI in the context of the bimodal approach. Computers sim-
ulations and preliminary results described in section 5 demonstrate
reasonably the feasibility and efficiency of this novel bimodal scat-
ter imaging system. A conclusion closes the paper with some open
research perspectives.

2. SCATTERED RADIATION IMAGING AND RELATED
RADON TRANSFORM

The working principle of Norton’s CST modality [9] is given in Fig.
2(a). In an idealized context, in order to convey the basic idea, a
point-like source S emits primary radiation towards an object, of
which M is a scattering site (running point). Also a point-like de-
tector D moves along an Ox-axis and collects, at given energy Eω ,
scattered radiation from the object. The physics of Compton scatter-
ing requires that the registered radiation flux density at site D is due
to the scattering contribution of all scattering sites M lying on an arc
of circle from S to D subtending an angle (π − ω), where ω is the
scattering angle corresponding to the outgoing energy Eω , as given
by the Compton relation.

The photon flux density at site D can be mathematically modeled
as

Cne(p, ϕ) = p

∫ π

0
dθ

∫ +∞

0
dr ne(r, θ) δ (r − p cos(θ − ϕ)) .

(1)
where δ (r − 2ρ cos(θ − ϕ)) is the one-dimension Dirac delta

function concentrated on the circle of center Ω and radius ρ going
through the source site S, see Figure 2(a). Cne(p, ϕ) is the Radon
transform of the object electron density ne(r, θ) on arcs of circle
passing through a fixed point S of equation r = p cos(θ − ϕ).

Under this form, inversion via circular harmonic components is
worked out by A M Cormack as follows [7, 8]. Let fl(r) be the
Fourier angular components of a function f(r, θ) given by

fl(r) = 1
2π

∫ 2π

0
f(r, θ)e−ilθdθ . (2)

Following A M Cormack, one can write down the inverse formula
as

nel(r) = 1
πr

∫ r

0

e−|l| cosh−1(r/p)√
( r
p
)2 − 1

(Cnel)′ (p)dp

− 1
πr

∫ +∞

r

U|l|−1(r/p) (Cnel)′ (p)dp (3)

where f ′ stands for the derivative of f and Ul−1(cosx) =
sin lx/ sin x is the Tchebychev polynomial of second kind. ne(r, θ)
is then reconstructed through its Fourier expansion with the circular
harmonic components nel(r).
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The working principle of the VEI and its associated CVRT for
an idealized context (without attenuation and for constant electronic
density ne) [10] are given in Fig. 2(b). A two-dimensional object
contains a non-uniform radioactivity source distribution emitting pri-
mary photons of energy E0. A collimated linear static detector col-
lects, at given energyEω , scattered radiation from this object in a di-
rection parallel to that of the collimator holes. The physics of Comp-
ton scattering requires that the registered radiation flux density g(D)
at site D is due to the sum of the contribution of all emitting object
point sources located on two half-lines starting at a site M and mak-
ing an angle ω with the collimator axis direction, for all possible M
along the axis of the collimator at D.

Let a(x, y) be an activity density function, then Va(ξ, ω) the
measured photon flux density at D under a scattering angle ω is
given by

Va(ξ, ω) =
∫
R2

+

drdη

4π2rη
a(±, η + r cosω) (4)

where a(±, .) = a(ξ + r sinω, .) + a(ξ − r sinω, .).
Eq. (4) is the compounded V-line Radon transform (CVRT)

of a(x, y) and decribes image formation in the emission imaging
modality from the scattered radiation [10].

The inversion of the CVRT has been established in [10] and the
inversion formula is :

a(x, y) =
∫ +∞

−∞

∫ +∞

−∞

e2iπq(y−z)h(x, z)
γ + iπ2 sgn(q)− ln(2π|q|)dzdq (5)

with

h(x, z) = z

π

∫ π
2

0
p.v.

(∫
R

V ã(u, ω)
u− x cosω ± z sinωdu

)
dω

cosω

+ z

π

∫ ∞
0

p.v.

(∫
R

Va(ξ,−τ)
ξ − x± zτ dξ

)
dτ ,

(6)
putting ω = arctan τ , u = ξ cosω and V ã(u, ω) = Va(ξ, τ).

As this expression can be rewritten as a simple backprojection over
corresponding broken lines convolved with a filter, it does not need
a specific computational regularisation.

3. MODELING WITH SCATTERING AND ATTENUATION
FACTORS

In fact the interaction ray/matter must be taken into account to deal
with a more realistic modeling of our imaging system. Indeed when
a photon flux crosses over some matter, it is submitted to attenuation.

Moreover the Compton differential cross section, σc(ω), must be
added in our modelings since here we use the scattered radiation as
imaging agent. However this factor is a function of the scattering
angle, ω, and so doesn’t represent an obstacle for the inversion pro-
cedure.

When Compton scattering and attenuation are taken into account,
eq. (1) becomes

Cφne(ρ, ϕ) =
∫ π

0
dθ

∫ ∞
0

dr ne(r, θ) w(r, θ; ρ, ϕ)

watt(r, θ; ρ, ϕ) δ [r − 2ρ cos(θ − ϕ)] , (7)

with

• watt(r, θ; ρ, ϕ) = exp
(
−
∫ r

0
µ0(t cos θ, t sin θ)dt −∫ r sin θ

sin(θ−ω)

0
µω(r cos θ + t cos(ω − θ), r sin θ + t sin(ω − θ))dt

)
,

• w(r, θ; ρ, ϕ) = r σc(ω)
4π (2ρ)3 sin2 θ

.

(8)
This equation describes image formation in the transmission

imaging modality from the scattered radiation.
In the same way we can propose a more realistic image formation

equation in the case of the VEI

Vφa(ξ, ω) =
∫ +∞

−∞

dη

2πη

∫ +∞

−∞

dr

2πr Y (r)Y (η) σc(ω)ne(ξ, η)

e
−
∫ η

0
µka(ξ,η′)dη′

(
e
−
∫ r

0
µ0
a(ξ′+,η+r′ cosω)dr′

a(ξ+, η + r cosω)

+ e
−
∫ r

0
µ0
a(ξ′−,η+r′ cosω)dr′

a(ξ−, η + r cosω)
)
, (9)

with ξ′± = ξ ± r′ sinω and Y (x) is the Heaviside unit step
function.

Taking into account the attenuation factor makes the presented
above inversion procedures impossible for CART and CVRT. We
still don’t know a way to invert these two attenuated Radon trans-
forms. Therefore we propose to proceed to the inversion by an iter-
ative correction.

4. CORRECTION ALGORITHM DESCRIPTION

Numerous methods were proposed to correct for photon attenuation
such as the Generalized Chang Correction (GCC) algorithm which
corrects the reconstructed image in the image space or Iterative Pre-
Correction (IPC) which corrects the data in the projection space, see
[12]. Nevertheless these algorithms require the knowledge of the
attenuation map. This information is not available in our case since
we aim to recover the attenuation map from the electron density. To
avoid such assumption, we propose an alternative generalized (in the
sense that it can be applied both for CART and CVRT) IPC algorithm
in which the attenuation map is obtained iteratively from the electron
density assuming that we know the medium and its corresponding
total cross-section.

We denote by T the operator C (resp. V) and by (X ,Y), the mea-
surable space (R+ × [0, π],R+ × [0, 2π[) (resp. (R+ × R+,R+ ×
[0, π])). Assuming that the studied image f , can be reconstructed
from its measurement Tf , the following recurrence relation con-
verges towards f

fn+1 = fn + d−1T−1 ◦ TΦ (f − fn) with f0 = 0 . (10)

where n is the iteration number, Tφ stands for a more realistic
image formation (see eqs (7) and (9)) and d is the maximum value of
the kernel of Tφ. This relation expresses our suited IPC algorithm.

Indeed for a realistic image (activity) reconstruction based on the
inverse CVRT (eq. (5)), the emission data acquired in VEI needs
to be corrected by inhomogeneous electron density and attenuation.
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The principle is then to reconstruct the electron density through a
correction of the attenuation factor in the Norton’s CST. In the con-
text of medical applications, we can use a prior information about
the studied image. Thus we assume that the studied organ (in terms
of attenuation) is composed of known substances. As we don’t know
the attenuation map, we approximate it from the electron density at
each step. Thus thanks to the following relation

µE(M) = σE(M) · ne(M), (11)
with µE(M), the linear attenuation factor for a radiation of energy
E at M, σE(M) the total cross-section of the matter at M for a ra-
diation of energy E and ne(M) the electron density at M, we can
process to a K-means clustering to deduce an approximation of the
attenuation map from the electron density. We can then update the
distorsion kernel which defines the operator Cφ and apply a correc-
tion of the attenuation factor, see Algorithm 1.

When the electron density and the non uniform attenuation map
are established, eq. (9) gives the real emission data, i.e. the image
formation of the activity density of the object. However such an
attenuated V-line Radon transform does not possess an inverse at
hand. It is necessary to correct the non constant electron density and
the non uniform attenuation in the emission data before recovering
the activity map by eq. (5). This procedure is iteratively carried out
until convergence is reached. (see Algorithm 2). The parameter ε is
an object-dependent threshold.

In both algorithms, Nn, Sn,Mn, An are the corresponding ma-
trices of ne(.), σE(.), µ0(.), a(.) at iteration n and G is respectively
the original data for CART and CVRT.

At last we obtain an approximated reconstruction of three infor-
mations of the studied medium : the electron density, the attenuation
map and the activity, through a novel bimodal system based on scat-
tered radiation. In the next section, we present simulation results.

Algorithm 1 µ0 correction algorithm for CART

Input G (Norton’s CST data), d and T−1

G← G/d
N1 ← T−1(G)
S1 ← K-mean algorithm on N1 %% total cross-section
M1 ← S1 ×N1

Tφ is updated
while en−1 − en > ε do
Gn ← Tφ(Nn)
Nn+1 ← Nn + d−1T−1(Gn −G)
Sn ← K-mean algorithm on Nn

Mn ← Sn ×Nn

Tφ is updated
n← n+ 1

end while
return Nn, Mn %% ne and µ0

5. SIMULATION RESULTS

In our experiments, we performed simulations on a computerized
brain phantom, which is essentially composed of four substances
such as air, water, brain and bone.

Moreover we include simulated lesions in the brain with an ac-
tivity equal to 13 MBq. The HU value (Hounsfield unit) is set to
50.

The scattering medium is discretized with 256 × 256 pixels. We
consider the number of detector positions Nx and the number of

Algorithm 2 ne and µ0 correction algorithm for CVRT

Input G (VEI data), d, Tφ and T−1

G← G/d
A1 ← T−1(G)
while en−1 − en > ε do
Gn ← Tφ(An)
An+1 ← An + d−1T−1(Gn −G)
n← n+ 1

end while
return An %% (a)

energy levelsNω . In order to have a "well-conditioned" problem, the
number of projections (Nϕ×Nω) must be larger than the number of
image pixels (256×256), see for example [11]. As the measurement
space is very big (because the system doesn’t work with rotation
around the body), we have to take a very large number of projections,
this is why we put Nϕ = Nω = 1024.

Since photon emission follows Poisson’s law, this phenomenon is
one of the main causes of degradation of image quality in Comp-
ton scattering tomography [1]. Thus the projections become in both
cases g(t) ∼ P (Tf(t)) where P stands for the Poisson law.

Here we present the robustness of our algorithms against the Pois-
son noise at two levels where SNR =25dB and SNR =15dB. The
results (see Fig. 2(c)) show representative quality of the attenua-
tion map and the activity map obtained by this approach, even in the
presence of the noise (up to SNR = 15db).

6. CONCLUSION AND PERSPECTIVES

The new bimodal imaging proposes an alternative to current tomo-
graphic imaging techniques. The transmission Compton tomogra-
phy modality can be combined with emission Compton tomography
to form a new bimodal imaging based on scattered radiation. The
first CST modality characterizes the studied material by its electron
density (scattering sites) and permits to reconstruct an approximate
attenuation map. The second modality leads to the reconstruction of
the activity distribution of the studied part of the human body. Thus
the reconstructions of the electron density and of the attenuation map
enable a good representation of the activity through a suited correc-
tion algorithm. This latter is shown to be efficient for the correction
of non-linear factors in the context of generalized Radon transforms
and is particularly suited for this kind of application.

A 3D extension of the new bimodal imaging approach is a chal-
lenging issue that remains to be explored.

7. DISCUSSION

This work follows [10, 11] in which mathematical aspects and in-
version procedure are described. But in [10, 11] only the scattering
aspect is presented to highlight the judicious use of the scattering
radiation as imaging agent. In order to make this new bimodal con-
cept realistic, an attenuation factor is taken into account in this pa-
per for both transmission and emission modalities. [13] deals with
the attenuation correction in SPECT using scattered data. Here our
imaging system is aimed to reconstruct the heterogeneous electron
density and solve the attenuation problem in emission modality from
the estimation of the electron density by a transmission CST modal-
ity which appears to be new. The obtained theoretical and numerical
results pave the way for a novel imaging using scattered radiation
and for a new concept of high-energy resolution detectors.
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