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ABSTRACT

Low dose X-ray Computed Tomography (CT) is clinically
desired to reduce the risk of cancer caused by X-ray radia-
tion. Compressed Sensing (CS), which allows images to be
formed from incomplete data, enables large dose reduction to
be achieved. Though this remains to be clinically unrealized
due to excessive computation times. In this paper we demon-
strate a fast, complete CS-based �2-TV minimizing CT re-
construction method applicable to both parallel and fan beam
geometries to recover high quality images from highly under-
sampled (thus low-dose) data. We apply the fast pseudo-polar
Fourier algorithm and the Central Slice Theorem to reduce
the computation time of CS recovery. On a typical desktop
computer, we are able to reconstruct a 512×512 CT image
in approximately 30 seconds: a clinically-significant speedup
compared to the many hours required by previous CS meth-
ods.

Index Terms— Computed Tomography, Central Slice
Theorem, Pseudo-Polar Fourier Transform, Compressed
Sensing

1. INTRODUCTION

Computed Tomography (CT) utilization has increased dra-
matically over the last two decades; principally due to the un-
surpassed speed and detail with which cross-sectional views
of soft tissues and organs can be obtained. However, CT scans
deliver a relatively large radiation dose to patients, giving rise
to concerns that this results in increased risk of developing
cancer [1]. Using standard reconstruction methods such as
Filtered Back Projection (FBP), low dose computed tomog-
raphy (CT) images suffer from low contrast-to-noise ratios.
A lower-dose CT scan protocol that nonetheless yields ac-
ceptable image quality is clinically desired and has been ea-
gerly sought, especially in the last decade. Iterative recon-
struction methods methods [2, 3] for obtaining high-quality
images from low-dose CT scans are the subject of active re-
search. While they outperform conventional FBP, which di-
rectly calculates the image in a single reconstruction step,
they are computationally expensive enough to hinder their

widespread clinical adoption. Compressed Sensing (CS) is
a relatively recent innovation in signal processing that allows
images to be recovered from fewer projections than required
by the Nyquist sampling theorem. As CS permits reconstruc-
tions from fewer X-ray exposures, the radiation dose from a
CS-based CT scan is lower than for a conventional scan. It
works by combining data with valid priors about the image
[4, 5]. CS-based reconstruction methods have been shown to
reconstruct the exact image from approximately one tenth of
the number of views needed in FBP [6], permitting a much
lower-dose scanning protocol than that needed for conven-
tional iterative reconstructions. However, most available CS-
based CT reconstruction algorithms are either prohibitively
computationally intensive for clinical use [7, 8] or make un-
physical assumptions to accelerate the algorithm [9]. Fast so-
lutions to CS-based CT imaging problems could enable prac-
tical lower-dose CT imaging. To find an image consistent
with both data and prior assumptions about the image, CS
requires solving an optimization problem similar to:

x̂ = argmin
x

1
2
‖y−Ax‖2

2+TV(x), (1)

where ‖x‖2
2 = i x

2
i , x̂ is the vectorized reconstructed im-

age, Ax is the expected data for an image x, y is the ob-
served data (y = Ax+ n), where n is noise. TVis the total
variation norm (a measure of the departure of x from the
prior assumption that images are partially smooth; TV(x) =

i

√
(�h

i x)
2+(�v

i x)
2, �h

i and �v
i are horizontal and verti-

cal first order local difference operator)  is a regularization
parameter specifying the relative importance of the adherence
of x̂ to the small TVnorm compared with the importance of
fitting the data with a small ‖y−Ax‖2

2. Currently, most avail-
able CS-based reconstruction methods use a huge sampling
matrix, A, which models the rays going through the patient. A
is a (kn )×n2 matrix whose entries are 1 if the kth ray at angle
i passes through a pixel and 0 otherwise. Therefore, to re-
construct a 512×512 pixel image from 900 sensors and 1200
projection angles, A would be a 1080000× 262144 matrix.
As typical iterations each usually require two multiplications
by A and AT, it takes several hours of computation on typical
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desktop computers to reconstruct a 512× 512 image with
such methods [7, 8]. Here, we propose a fast CS-based CT
reconstruction method which decouples information taken at
different angles, making it able to recover high-quality im-
ages from few parallel projections in less than a minute using
a regular desktop computer. The method is then modified
for use with a fanbeam geometry. Section 2 of this paper
describes the proposed method. Section 3 presents the simu-
lation results. Section 4 contains the concluding remarks and
finally in section 5 the relation between the proposed method
to prior research are discussed.

2. PROPOSED METHOD

To construct a fast CT image from incomplete measurements,
we perform the following steps:

1. CT scan data is obtained at the slightly nonuniformly
spaced angles that correspond to those used for a
pseudo-polar Fourier transform - see Fig. 1A [10].

2. The CT data thus obtained is rebinned from the fan
beam to a parallel beam geometry [11], keeping track of
the confidence level of each rebinned observation point.

3. A 1-D Fourier transform is then taken of the rebinned
data obtained for each projection angle.

4. Fourier-transformed data are interpolated from the po-
lar measurement basis to the pseudo-polar basis using
1-D interpolations in radial direction.

5. TwIST (a CS solver) is applied on the pseudo-polar ba-
sis to find an image that simultaneously fits the data
and has a low TVnorm, weighing the importance of
each observation by our confidence in it, as described in
step 2. The fast pseudo-polar Fourier transform allows
TwIST to satisfy observations on a pseudo-polar basis
while enforcing TVsparsity on a real space Cartesian
basis in a computationally-efficient way [12].

Our key innovation is that it is possible to reduce the prob-
lem complexity presented to the CS solver by decomposing
the image reconstruction problem into a collection of much
less complex radial problems. This decomposition is made
possible through the use of the Central Slice Theorem (CST)
[13], which has been used in Direct Fourier Reconstruction
(DFR) methods. Ignoring limitations due to finite sampling,
the CST proves the following relationship between the 1D
Fourier transform of the parallel projections in different an-
gles  , P( ,), and the 2D Fourier transform of the desired
image, F(x,y):

P( ,) = F( cos , sin) (2)

(A) (B)

Fig. 1: (A) Pseudo-polar grids, with basically-horizontal lines
in dashed red and basically-vertical lines in solid black. (B)
Polar grids (red dots) superimposed on pseudo-polar grids
(gray dots). Interpolating data from a polar to a pseudo-polar
coordinate system requires only a 1-D interpolation.

where  is the radial frequency. Since CST is valid for par-
allel geometry, for fanbeam geometry the rays should be first
rebinned to parallel beams. This additional step potentially
adds extra error. We propose to use the confidence measure,
computed in step 2, to modify the CS formulation to handle
this extra error.
To apply TwIST to a polar-coordinate problem such as CT
reconstruction it is necessary to have a rapid method to com-
pute the real-space image given pseudo-polar Fourier trans-
formed (PPFT - see Fig. 1) data. The PPFT can be computed
quickly using 1D FFT and fractional Fourier transform [10].
As can be seen in Fig. 1, pseudo-polar grids contain basically-
horizontal (BH) and basically-vertical (BV) lines of samples.
The PPFT for BH samples is defined as follows; a similar
expression is used for BV samples [14]:

x̂BH
l,m =

1
n

n−1


j2=0

n−1


j1=o

x j1, j2e
−i l( j1n+2 j2m)/n2

=
1√
n

n−1


j2=0

(
1√
n

n−1


j1=o

x j1, j2e
−i2 j1l/2n).e−i2 j2m/n (3)

where  = l
n . To reconstruct an N ×N image, PPFT needs

4N2 samples (2N projections and 2N samples in each projec-
tion), with a complexity of O(N2 logN). Taking initial data
along the angles of the pseudo-polar transform (which are not
exactly evenly-spaced) eliminates the need for 2D interpola-
tion to convert polar measurements to a pseudo-polar basis
and reduces interpolation artifacts. A 1D interpolation suf-
fices to transform this data into a pseudo-polar coordinate sys-
tem. Since the Fourier domain could be oversampled by ze-
ropadding the projections, this 1D interpolation is sufficiently
accurate. In addition, the PPFT’s adjoint has a closed form
solution [10], which accelerates the reconstruction process in
our algorithm.
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As mentioned, we construct images by solving (1), in which
we use the fast PPFT function as A [10]. If the true image
has a sparse TVnorm, (1) enables x to be found given enough
data.
To solve (1), TwIST applies the following equation to update
the estimated image at the (t + 1)th iteration [12]:

xt+1 = (1−)xt−1+(− )xt + (xt). (4)

Here,  (x) = TV ( ,x+AT (y−Ax)) where TV ( , ·) is the
total variation denoising that uses  as its threshold [15]. In
the first iteration x1 =  (x0) is used. In fanbeam geometry,

(A) Shepp-Logan (B) Chest phantom

Fig. 2: Test images used here.

y is the Fourier transform of the rebinned data in the pseudo-
polar coordinate system. Our confidence in each entry of y
depends on how close the interpolated point is to a raw ob-
servation and on expected rebinning error. To improve re-
construction accuracy, we scale the �2 penalty term in (1) as
follows to reflect our confidence C in the value of a particular
observation:

x̂ = argmin
x

1
2
‖C• y−C•Ax‖2

2+TV(x), (5)

in which • is the element-wise multiplication and Ci,m is cal-
culated from the distance between the closest samples in fan-
beam geometry and the rebinned ray at an angle i for the mth

sensor.

3. RESULTS

The proposed method was tested on the two ground truth im-
ages shown in Fig. 2. We first demonstrate that our method
is capable of generating high-quality images from incomplete
data Fig. 3 compares images recovered with inverse PPFT
(iPPFT) to our method’s output when 100 projections (only
1/10th of the projections normally needed for FBP) and 512
samples (half of the number of samples needed for FBP) are
available (5% of data needed for FBP). As can be seen in this
figure, �2-TV recovery generates high-fidelity images from
5%-complete datasets. iPPFT pressrves some features of the
image (highly correlated with original image) but changes the
gray scale values (Hounsfield Units) and introduces artifacts

(high error). The comparisons are based on a normalized er-
ror of ‖x̂−x‖2/‖x‖2 and the correlation between the original
image and the results,  . Fig. 4 shows the recovery error

(A) (B)

(C) (D)

Fig. 3: Images recovered from 100 projections and 512 sam-
ples on each ray (5% of the data needed for FBP): (A) Shepp-
Logan phantom recovered by iPPFT, error 98% and  = 0.86.
(B) Chest phantom recovered by iPPFT, error 98% and  =
0.92. (C) Shepp-Logan phantom recovered by our proposed
algorithm, error 0.9% and  = 0.99. (D) Chest phantom re-
covered by proposed algorithm, error 0.5% and  = 0.99.

using iPPFT and �2-TV for different numbers of projections.
In each case, 512 samples per angle are taken: half the num-
ber required by FBP. Fig. 5 compares our �2-TVmethod,
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Fig. 4: Recovery error (MSE of 10 runs) of the undersampled
data with different number of projections and 512 samples in
each projection.

iPPFT, and weighted back projection for fanbeam geometry.
342 fanbeam projections are used to estimate the 342 closest
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(A) (B)

(C) (D)

(E) (F)

Fig. 5: Comparison of different reconstructionmethods of un-
dersampled fanbeam data (342 projections): (A), (B) inverse
PPFT; (C), (D) �2-TV; (E), (F) weighted back projection.
(A) and (B) have different window/level since the Hounsfield
units are completely changed. Other figures have the same
window/level (W=1500, L=-600 for Chest and W=1, L=0.5
for Shepp-Logan).

parallel projections on pseudo-polar grids; this is 1/3rd of the
number of projections needed for FBP. As can be seen, our
proposed method results in smaller error (≈1%,  ≥ 0.99)
than iPPFT (≈98%,  ≈ 0.90) or weighted back projection
(≈56%,  ≈ 0.80). Most suitable CS-based CT reconstruc-
tion methods use ART and TV smoothing [8] to iteratively
solve (1). Using a standard desktop computer, Fig. 6 com-
pares the computation time of an ART algorithm [16] as the
core of such algorithms with our proposed method for paral-
lel geometry. Typically, 100 ART iterations are required for a
high-quality CT image [8]. Therefore, to get a rough estimate
of the computation time of the method proposed in [8], one
should multiply the computation time for ART in Fig. 6 by
100. Since our computer did not have sufficient RAM for a
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Fig. 6: Computation time of a single ART iteration and our
proposed method. Images size is 256×256 in this example.

512× 512 ART iteration, we have used 256× 256 images in
Fig. 6. In contrast, a full reconstruction of a 512×512 image
with our method takes approximately 30 seconds.

4. CONCLUSION

CS has been used in CT recovery since 2006 [6] and has been
used in clinical research since 2008 [7]. However, these meth-
ods are either computationally intensive or not directly appli-
cable to CT scans, thereby hindering the clinical adoption. To
our knowledge, the proposed method is the first capable of
being used in a clinical settings with reasonable image com-
putation time using a regular desktop computer. Our method
uses a novel combination of the CST, CS and the pseudo-polar
Fourier transform. The proposed method is able to recover
512× 512 CT images with less than 1% error from under-
sampled parallel or fanbeam data in 30s (30000 times faster
than the conventional methods) on a desktop computer.

5. RELATION WITH PRIOR WORKS

Pseudo-polar Fourier transform was proposed in 1996 [17,
18] which facilitates the direct fourier tomography. A fast and
accurate PPFT calculation method was proposed by the same
group in [10, 14] and has been used in different tomography
based modalities such as electron microscopy [19, 20, 21],
X-ray absorption and phase-contrast CT [22]. In [22, 19],
TV smoothing is used iteratively with forward/backward ap-
plication of PPFT to reduce the artifacts which are made by
incompleteness of the available data. In [14], a 2D Discrete
radon transform is proposed for fanbeam geometry for linear
X-ray movement. Here we used a new combination of CST,
CS and PPFT to improve our CS-based CT reconstructions.
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