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ABSTRACT 

Deformable models are common in image modeling and 

analysis. Random objects provide major challenges as 

shapes and appearances are hard to quantify; hence, 

formulation of deformable models are much harder to 

construct and validate. In this paper, we examine the effect 

of randomness on building the shape and appearance 

models for small-size lung nodules (      which appear 

in computed tomography (CT) of the human chest. We 

devise an approach for annotation, which lends a standard 

mechanism for building traditional active appearance 

(AAM), active shape (ASM) and active tensor models 

(ATM). We illustrate the effectiveness of AAM for nodule 

detection. 
 

1. INTRODUCTION 
 

Automatic approaches for image analysis require precise 

quantification of object attributes such as shape and texture. 

These concepts have precise definitions, but their 

descriptors vary so much from one application to another.   

A shape is defined to be the information attributed to an 

object that is invariant to scale, origin and orientation [1]. A 

texture may be defined as the prevalence pattern of the 

interior of an object [2]. Geometric descriptors identify 

“features” that are “unique” about an object. Shape, texture 

and geometric descriptors are major concepts in this work; 

they will be defined and used in the context of modeling 

small size objects under uncertainties [3].  

1.1 Lung Nodules in Low Dose CT 

Figure 1 shows examples of small size nodules (      

from four categories [4][5]. The upper and lower rows show 

zoomed images of these nodules. Notice the ambiguities 

associated with shape definition, location in the lung tissues, 

and lack of crisp discriminatory features. Modeling aims at 

representing the objects with mathematical formulation that 

captures their characteristics such as shape, texture and 

other salient features. The histogram of the object’s image 

provides some information about its texture – the modes of 

the histogram indicate the complexity of the texture of the 

object. Another difficulty of small objects lies with 

inabilities of exact boundary definition. For example, 

radiologists may differ in outlining the lung nodules spatial 

support as shown in Figure 2. Difference in manual 

annotation is common of small objects that have no well-

defined description. This adds another dimension of 

difficulty for automatic approaches, as they are supposed to 

provide outputs that mimic human experts.  In other words, 

human experts differ among themselves, how would they 

judge a computer output? Validation of automatic 

approaches for lung nodule detection, segmentation and 

classification - using only the visible information in an 

image - is much more difficult than that of automatic face 

recognition, for example.  

 

Figure 1 - Examples of lung nodules of size below 10 mm from two 

clinical studies. The upper and lower rows show zoomed pictures 

of the nodules. 
 

Figure 3 shows histograms of the average intensity 

measured in Hounsfield Units (HU) of manually cropped 

nodules from the ELCAP and LIDC screening studies. The 

histograms are distinctly bimodal; a binary classifier may be 

used for separating the nodules and non-nodules regions. 

The decision boundary may be selected by various 

techniques, including fitting one-dimensional Gaussian 

density for the nodule and non-nodule regions and using the 

expectation-maximization approach (EM) to estimate the 

parameters. Unfortunately, this approach has been shown 
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not to perform well due to the uncertainties associated with 

the physical nodules as previously described (e.g., [6]). 

Most approaches of lung nodule modeling do not consider 

shape or texture information; some approaches utilize 

features that rely heavily on the dataset at hand [13], thus, 

comparison of the same approach using different data is 

difficult. In [6], for example, a five-step system for 

modeling of small lung nodules was introduced: i) CT 

Acquisition and Enhancement; ii) Parametric Modeling; iii) 

Nodule Detection; iv) Nodule Segmentation; and v) 

Categorization (Classification). By constructing a front-end 

system of image analysis (CAD system) for lung nodule 

screening, all of these steps must be considered.  The focus 

is to examine the “data-driven” modeling approach.  
 
 

 
 

Figure 2 – Manual annotation of the main portion of the spatial 

support of lung nodules by four radiologists.  

Figure 3 – The intensity (HU) histograms of the manually cropped 

nodules from the ELCAP and LIDC screening studies.  

The theoretical development in this paper falls under the 

modern approaches of shape and appearance modeling. 

These models assume the availability of an ensemble of 

objects annotated by experts – the ensemble includes 

variations in the imaging conditions and objects attributes to 

enable building a meaningful statistical database. Active 

shape models (ASM) and active appearance models (AAM) 

have been powerful tools of statistical analysis of objects 

(e.g., [8][9]). The main contribution of the paper is to 

validate the data-driven approach for lung nodule modeling 

and analysis, developed by the authors (e.g., [6] [7]), on 

larger size nodule databases, and to examine the issue of 

auto-nodule cropping and annotation, which is essential for 

successful building of active appearance models (AAM). 
 

2. LUNG NODULE MODELING 
 

Real world objects may take various forms of details, and 

may be linear, planar or three-dimensional. In [3], Dryden 

and Marida, define anatomical landmarks as points assigned 

by an expert that corresponds between organisms in some 

biologically meaningful way; mathematical landmarks as 

points located on an object according to some mathematical 

or geometrical property, i.e. high curvature or an extremum 

point; and pseudo-landmarks as constructed points on an 

object either on the outline or between landmarks. Figure 4 

is a sample of small-size nodules smaller than       in 

diameter from the LIDC [5] clinical study, showing the 

variations that can be captured by shape and appearance 

models. From a computer vision prospective, AAM and 

ASM modeling have been used with great successes in 

objects having distinct landmarks (e.g., Cootes et al. [8] and 

Mathews and Baker [9]). A shape is considered to be a set 

of   vertices     ; for the two-dimensional case: 

                                     (1) 

The shape ensemble (realizations of the shape process of a 

certain object) is to be adjusted (aligned) on the same 

reference to enable filtering of scale, orientation and 

translation among the ensemble, per the shape definition. 

This alignment generates the so-called shape space, which 

is the set of all possible shapes of the object in question. To 

align the shapes in an ensemble, various procedures may be 

used.  The Procrustes procedure is common for rigid shape 

alignments. The alignment process removes the 

redundancies of scale, translation and rotation using a 

similarity measure that provides the minimum Procrustes 

distance. Suppose an ensemble of shapes is available with 

one-to-one point (feature) correspondence is provided. The 

Procrustes distance between two shapes    and    is the 

sum of squared distance (SSD) 

  
   ∑ (   

    
 )

  
    + (   

    
 )

 
  (2) 

Annotated data of an ensemble of shapes of a certain object 

carries redundancies due to imprecise definitions of 

landmarks and due to errors in the annotations. Principal 

Component Analysis (PCA) may be used for reducing these 

redundancies.  In PCA, the original shape vector   is 

linearly transformed by a mapping  such that       has 
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less correlated and highly separable features. The mapping 

  is derived for an ensemble of   shapes as follows: 

 ̅   
 

 
 ∑   

 
         = 

 

 
 ∑    

 
      ̅       ̅         (3) 

are the mean and covariance of  .Therefore, the mean and 

covariance of   would be: 

 ̅   
 

 
 ∑   

 
         (4a) 

   = 
 

 
 ∑    

 
      ̅       ̅        

  (4b) 

If the linear transformation   is chosen to be orthogonal; 

i.e.,        , and selecting it as the eigenvectors of the 

symmetric matrix      this would make    to be a diagonal 

matrix of the eigenvalues of   . The eigenvectors 

corresponding to the small eigenvalues can be eliminated, 

which provides the desired reduction. Therefore,   may be 

expressed as: 

   ̅        (5) 

where      |  |  |    matrix of   largest eigen 

vectors of    and         ̅  is an      vector. 

Equation (5) is the statistical shape model, which is derived 

using PCA.  By varying the elements of   one can vary the 

synthesized shape   in Eq. (5). The variance of the       

parameter         can be shown across the training set to 

be equal to the eigenvalue    [8].  

2.3 Annotation of Random Objects 

In order to construct the active appearance or active tensor 

models, we need an annotated ensemble of objects. In case 

of random objects, the annotation process becomes 

extremely difficult; it takes yet another level of difficulty 

with small-size. Yet, the major goal of this work is to 

address such objects, specifically, small size lung nodules, 

which are used for early detection screening of possible lung 

cancer.  We used the fuzzy description of lung nodules from 

Kostis et al. [10] to devise a feature definition approach for 

four categories of nodules; well-circumscribed, 

vascularized, juxta-pleural and pleural-tail nodules.  Figure 

4 illustrates the landmarks that correspond to the clinical 

definition of these four nodule categories.  
 

  
  

Figure 4 – Definition of Control points (landmarks) for nodules. 

Right-to-left: juxta-pleural, pleural tail, vascular, and well-

circumscribed nodule models. 
 

Using these definitions, we created a manual approach to 

annotate the nodules. First, we take the experts’ annotation, 

zoom it and manually register it to a template defining the 

nodule type/category, and then we select the control points 

on the actual nodule using the help of the template.  This 

annotation enabled creation of active appearance models, 

which mimics largely the physical characteristics of lung 

nodules that cannot be modeled otherwise. Figure 5 shows 

examples for the nodule models generated by ensembles 

from the ELCAP and LIDC clinical lung screening studies. 

The average nodules (shown in Figure 5) capture the main 

features of real nodules. Incorporation of other basis has 

been studied in Farag et al., 2012 [7].  
 

    

(a) Average nodules from ELCAP study 

   
 

(b) Average nodules from LIDC study 

Figure 5 – AAM Models for lung nodules from clinical CT scans. 

Right-to-left: juxta-pleural, pleural tail, vascular, and well-

circumscribed nodule models. 

  

3. MODEL-BASED NODULE DETECTION 
 

The above modeling approach has provided tremendous 

promise in three subsequent steps of lung nodule analysis: 

detection, segmentation, and categorization. Due to space 

limitations, we only consider lung nodule detection using 

the AAM nodule models. Further, we use only a basic 

detection approach that is based on template matching with 

normalized cross-correlation (NCC) as similarity measure. 

Other measures have been examined in our related work 

(e.g., [7]). We report the detection performance by 

constructing the ROC of both the ELCAP and LIDC clinical 

studies for the first time. We chose to limit the ensemble 

size for modeling to be 24 per nodule type for the two 

studies, to provide a comparison with our earlier work [6]. 

The ROCs are built to show the overall sensitivity and 

              of the detection process. The textures of 

the parametric nodules were generated by the analytical 

formulation in our earlier work (e.g., [6]). 

3.1 Clinical Evaluation on ELCAP database  

The ELCAP database [4] contains 397 nodules, 291 

identified and categorized nodules are used in the detection 

process. Results using only the average (mean) template 

models generated from the AAM approach is examined 

against parametric nodule models, (i.e. circular and semi-

circular) of radius 10, templates in this first set of 

experiments. Figure 6 shows the ROC; illustrating a superb 

performance of the AMM-based approach. 

3.2 Clinical Evaluation on LIDC database  

The Lung Imaging Data Consortium (LIDC) [5] contains 

1018 helical thoracic CT scans from 1010 different patients. 

We used ensembles of 24 nodules per nodule type to design 

the nodule models (templates) and the rest to test the 

detection performance. Figure 7 shows the ROC of   

A
ve

ra
g
e
 n

o
d
u
le

 f
o
r 

ju
x
ta

 n
o
d
u
le

s
 b

e
fo

re
 r

e
g
is

tr
a
ti
o
n

A
ve

ra
g
e
 n

o
d
u
le

 f
o
r 

ju
x
ta

 n
o
d
u
le

s
 a

ft
e
r 

re
g
is

tr
a
ti
o
n

A
ve

ra
g
e
 n

o
d
u
le

 fo
r p

lu
ra

l ta
il n

o
d
u
le

s
 b

e
fo

re
 re

g
is

tra
tio

n
A

ve
ra

g
e
 n

o
d
u
le

 fo
r p

lu
ra

l ta
il n

o
d
u
le

s
 a

fte
r re

g
is

tra
tio

n

A
ve

ra
g
e
 n

o
d
u
le

 fo
r va

s
c
u
la

r n
o
d
u
le

s
 b

e
fo

re
 re

g
is

tra
tio

n
A

ve
ra

g
e
 n

o
d
u
le

 fo
r va

s
c
u
la

r n
o
d
u
le

s
 a

fte
r re

g
is

tra
tio

n

Average nodule for well nodules before registration Average nodule for well nodules after registration

1092



 

 

            vs. sensitivity.  The results once again showed 

the AAM-models provided better detection results over the 

parametric models.   

 
Figure 6 - ROC curves for template matching detection on the 

ELCAP database using ELCAP models versus the circular and 

semi-circular models (i.e.parametric). 
 

 
Figure 7 - ROC curves for template matching detection on the 

LIDC database using LIDC versus parametric and ELCAP models. 
 

4. DISCUSSION  

In generating the above ROCs, we used the mean in the 

AAM models as the nodule template (note: in Farag et al., 

2012 [7] we used other eigen-nodules besides the mean). 

From Figures 6 and 7, the templates from the ELCAP 

ensemble showed better performance than those from the 

LIDC ensemble. This could be a result of the wide range of 

variations in texture information found in the LIDC 

database, which affect the appearance of the resulting 

nodule model (template). We used 24 nodules, per nodule 

type, in both ELCAP and LIDC. 
 

We note that in the ELCAP database, the data acquisition 

protocol was the same throughout; very low resolution. That 

was reflected in the AAM model, showing a texture that is 

relatively more homogenous than that in the LIDC case, 

which uses data from various imaging centers and various 

imaging scanners, with somewhat variable range of 

Hounsfield Units (HU).  

In general, if we include more nodules in the design, we 

expect a better appearance modeling; the LIDC database 

allows such choice.   

5. CONCLUSIONS 

The paper dealt with modeling of small-size lung nodules 

using two clinical studies, the ELCAP and LIDC.  We 

discussed the process of nodule annotation and the steps to 

create AAM nodule models. These models resemble the real 

nodules, thus using them as templates for nodule detection is 

more logical than the non-realistic parametric models. These 

types of models add two additional distinctions over the 

parametric approaches; it can automate the processes of 

nodule segmentation and categorization. Our preliminary 

results show advantage on both issues – this is a natural 

extension of the work reported here (e.g., [11]).   
 

We plan to carry out the tensor modeling approach, and 

study the effect of nodule ensemble size. From the 

algorithmic point of view, an adaboost strategy for carrying 

out the detection may lend speed advantage over the typical 

cross-correlation implementation used in this paper.  In 

addition, with proper lung nodule models, an approach 

similar to Viola-Jones Face Detector may be possible [12]. 
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