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ABSTRACT 
 

Optical coherence tomography (OCT) is known to be one 
of the powerful and noninvasive methods in retinal imaging. 
OCT uses retroreflected light to provide micron-resolution, 
cross-sectional scans of biological tissues. In contrast to 
OCT technology development, which has been a field of 
active research since 1991, OCT image segmentation has 
only been fully explored during the last decade. In this 
paper, we introduce a fast segmentation method based on a 
new kind of spectral graph theory named diffusion maps. 
The research is performed on spectral domain OCT images 
depicting normal macular appearance. In contrast to our 
recent methods of graph based OCT image segmentation, 
the presented approach does not require edge-based image 
information and rather relies on regional image texture. 
Consequently, the proposed method demonstrates 
robustness in situations of low image contrast or poor layer-
to-layer image gradients. This method is tested on thirteen 
3D macular SD-OCT images obtained from eyes without 
pathologies with Topcon 3D OCT-1000 imaging system 
(with a size of 650 × 512 × 128 voxels and a voxel 
resolution of 4.81 × 13.67 × 24.41 𝜇𝑚3). The mean 
unsigned and signed border positioning errors (mean ± SD) 
was 8.52±3.13 and -4.61±3.35 micrometers, respectively. 
The average computation time of the proposed algorithms 
(implemented with MATLAB) was 12 seconds per 2D slice. 

 
Index Terms— Optical coherence tomography (OCT), 

segmentation, spectral graph theory, diffusion map. 
 

1. INTRODUCTION 
 
Optical coherence tomography (OCT) is a powerful imaging 
modality used to image various aspects of biological tissues, 
such as structural information, blood flow, elastic 
parameters, change of polarization states, and molecular 
content [1]. OCT uses the principle of low coherence 
interferometry to generate two- or three-dimensional 
imaging of biological samples by obtaining high-resolution 
cross-sectional backscattering profiles (figure 1.a). Two 
kinds of OCT (time-domain and frequency-domain (SD-

OCT)) are available in retinal analysis. In contrast to OCT 
technology development which has been a field of active 
research since 1991, OCT image segmentation has only 
been more fully explored during the last decade. 
Segmentation, however, remains one of the most difficult 
and at the same time most commonly required step in OCT 
image analysis. No typical segmentation method exists that 
can be expected to work equally well for all tasks [2]. We 
may classify the OCT segmentation approaches into five 
distinct groups according to the image domain subjected to 
the segmentation algorithm. Let’s define 5 separate families 
of segmentation approaches: Methods applicable to A-scan, 
B-scan, active contour approaches (frequently in 2-D), 
analysis methods utilizing artificial intelligence, and 
segmentation methods using 3D graphs constructed from the 
3D OCT volumetric images. To have a fair comparison 
between the time complexities of these methods, it should 
be mentioned that the CPU used in the methods have 
relatively similar speeds.  
A-scan methods were firstly introduced by Hee [3] and 
were popular until 2005[4-5]. They completely lacked the 
contribution from 3D image context and suffered from 
excessive computation time and lack of layer detection 
accuracy. 
B-Scan methods allowed to deal with 2D noise by 
incorporating better denoising algorithms during the 
preprocessing step. However, the dependency of these 
algorithms on noise reduction required very complicated 
and time-consuming denoising like anisotropic diffusion, 
which made these algorithms too weak from the speed point 
of view [6-7]. Additionally, the underlying intensity based 
methods and the relevant threshold selection was a difficult 
problem that was case-dependent. 
Active contours approaches to OCT image segmentation 
were first proposed by Cabrera Fernández [8] and modified 
by Yazdanpanah [9]. Unfortunately the time complexity and 
exact error reports are not available in any of the mentioned 
papers, which makes such methods difficult to compare with 
other published methods. Regardless, active contour 
algorithms surpass the performance of intensity based B-
Scan approaches, both in resistance to 2D noise and in 
accuracy. 
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Artificial intelligence based approaches were presented in 
[10, 11] and relied on a multiresolution hierarchical support 
vector machine (SVM) or on fuzzy C-means clustering 
techniques. The first one reported to have low ability in 
detection (6pixels of line difference and 68% of thickness 
difference) and a high time complexity (2 minutes). But, the 
latter [11] reported to have better results by only 2 pixels of 
linear difference and 45 seconds of time complexity. 
Overall, these methods cannot be categorized as established 
standard approaches since later-introduced methods like 
graph-based approaches can surpass them both in accuracy 
and time complexity. 
3D graph-based methods seem so far to be best suited for 
the task in comparison to the above-mentioned approaches. 
Their time requirements can be reduced to about 45 seconds 
per 3D volume (480x512x128 voxels) and they routinely 
achieve high accuracy with about 2.8μm of layer-surface 
segmentation error. Such methods take advantage of newly 
developed 3D imaging systems, which provide better 
visualization and 3D rendering of segmentation results [12-
14]. By design benefitting from contextual information 
represented in the analysis graph, these methods are robust 
to noise and do not require advanced noise reduction in the 
preprocessing steps. While there is no theoretical limit on 
the number of layers that can be simultaneously segmented 
by these approaches, up to 10 layers are routinely identified 
in retinal OCT images, performance that unavailable to the 
other above-referenced algorithms. 
One of the most promising methods among the studied 
strategies is graph based image segmentation. We focus on 
novel spectral- geometric methods for graph based image 
[15-18] and explore a two step diffusion map approach to 
segmentation of OCT images. The proposed method is 
obviously categorized in 3D graph based methods; to clear 
up, we should focus on partitioning methods proposed on 
graphs. Similar to signal processing approaches, most of 
graph based partitioning methods were based on time-
domain analysis. It means that the graph partitioning was 
usually based on properties in the graph domain like 
gradient or texture. But newly developed methods in 
frequency domain are based on signal analysis in new 
domains (similar to Fourier transform in signal processing). 
The proposed Diffusion Map method is similarly working 
on Fourier transform applied on graphs and the method can 
utilize the intrinsic capabilities of the frequency space 
consequently. 

 
Figure.1. a) A sample OCT image. b) Results of the first diffusion 

map. 

2. DIFFUSION MAPS 

Diffusion maps [19] are a spectral embedding of a set X of n 
nodes, for which local geometries are defined by a kernel  

k: X × X → R. The kernel k satisfies k(x,y) ≥ 0, and 
k(x,y)=k(y,x). This kernel can be interpreted as an affinity 
between nodes. The resulting graph (an edge between x and 
y carries the weights k(x,y)) can be transformed into a 
reversible Markov chain by the so called normalized graph 
Laplacian construction. We define a row normalized version 
of 𝑘(𝑥,𝑦), called 𝑝(𝑥,𝑦) (new kernel): 
𝑠(𝑥) =  ∑ 𝑘(𝑥,𝑦) 𝑦                                                                   (1) 
and 
 𝑝(𝑥,𝑦) =  𝑘(𝑥,𝑦)

𝑠(𝑥)
                                                                        (2) 

This new kernel is no longer symmetric, but it satisfies 
∀𝑥, ∑ 𝑝(𝑥,𝑦)𝑦 = 1                                                          (3) 
Therefore it can be interpreted as the probability of the 
transition from node x to node y in one time step, or a 
transition kernel of a Markov chain. 𝑃 is the Markov matrix 
whose elements are 𝑝(𝑥,𝑦) and the elements of its powers 
Pτ are the probability of the transition from node 𝑥 to node 𝑦 
in 𝜏 time steps. The operator P defines a geometry which 
can be mapped to an Euclidean geometry by an eigenvalue 
decomposition of P. 
The latter results in a sequence of eigenvalues 𝜆1, 𝜆2. . . and 
corresponding eigenfunctions Ψ1, Ψ2, . . . that fulfill 
𝑃Ψi = λiΨi. The diffusion map after 𝜏 time steps Ψ𝜏:𝑋 →
𝑅𝜔embeds each node i = 1, . . . , n in the Markov chain into 
a 𝜔 dimensional Euclidean space where the clustering of the 
datapoints can be done using k-means 

𝑖 → Ψ𝜏(𝑖) = �

λ1
𝜏Ψ1(i)

λ2
𝜏Ψ2(i)
⋮

λ𝜔
𝜏Ψ𝜔(i)

�                                              (4) 

A common choice for the kernel k(.,.) is the Gaussian 
kernel, i.e. 𝑘(𝑥,𝑦) = exp �− 𝑑2(𝑥,𝑦)

2𝜎2
�, where d is a distance 

over the set X and 𝜎 a scale factor. To present an intuitive 
explanation, we can say that a row normalized Markov 
matrix (p) is the time domain representative of the graph and 
the scaled eigen functions Ψ𝜏(𝑖) play the role of Frequency 
domain coefficients, clustering of which provides the graph 
partitioning. 

 
3. IMPLEMENTING DIFFUSION MAPS ON 

GRAYLEVEL IMAGES 
 
In order to apply the diffusion maps to OCT images, graph 
nodes must be associated with the image pixels. We employ 
the diffusion map in 2 sequential steps, the first of which 
segments 5 layers simultaneously, i.e., the 1st, and 7th to 10th 
layers. Each layer corresponds to a distinct anatomical 
structure. The second step identifies the inner layers, i.e., 2nd 
to 6th layers. For implementing the first step, we select 
10 × 10 pixel boxes as graph nodes and the kernel is 
defined as: 

𝑘(𝑥,𝑦) = exp �− 𝑑2(𝑥,𝑦)
2𝜎𝑔𝑒𝑜2

� . exp �− 𝑑2(𝑔(𝑥),𝑔(𝑦))
2𝜎𝑔𝑟𝑎𝑦2

�             (5) 
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where x, y indicates the centroids of selected 10 × 10 
boxes, 𝑔(. ) is the mean gray level of each box, 𝜎𝑔𝑒𝑜 and 
𝜎𝑔𝑟𝑎𝑦 point out the scale factor calculated as .15 times the 
range of 𝑑(𝑥,𝑦) and 𝑑(𝑔(𝑥),𝑔(𝑦)) respectively. 
Subsequently, k-means clustering with k=3 is applied to the 
Euclidean space constructed by eigenfunctions (Fig.1.b). 
The edge points of the upper and lower clusters are 
extracted and the results enhanced based on applying the 
following operators on edges: cubic spline smoothing, local 
regression using weighted linear least squares, and 2nd 
degree polynomial models. In the next step, the extracted 
edges are moved to the lowest vertical gradient in a vertical 
search area of 10 pixels above and 10 pixels below. 1st and 
7th layers were obtained in this step and the 8th – 10th layers 
were detected by looking for the highest and lowest 
(alternatively) vertical gradients in a vertical search area of 
10 pixels below (Fig. 2. a). The unwanted drift of the OCT 
images is then removed according to 9th layer to change 
each column of image in order to produce a linear layer in 
the place of the 9th section (Fig.2.b). 
 

 
Figure.2. a) 1st and 7th to 10th layers, b) Linearization. 

 

 
Figure.3.The results of the second diffusion map on right and left 

parts of the image. 
 
In the next step, the pixel boxes representing the graph 
nodes are selected as very thin horizontal rectangles 
(2 × 20 𝑝𝑖𝑥𝑒𝑙𝑠). This selection is according to the structure 
of OCT images after linearization (Fig.2.b). The kernel is 
selected similar to (5) and the k-means clustering is applied 
with k=5. The area of image was divided in two (right and 

left) parts to increase the accuracy of the method (Fig. 3). It 
should be mentioned that in the case of overall assessment 
of the images (without breaking to right and left parts), the 
algorithm couldn’t find proper subgroups. For instance, the 
first layer in right and left part of figure 3 has no 
connections and couldn’t be merged to form a good cluster 
in diffusion map algorithm. 
The edge points of clusters were then extracted and the 
points were connected to make a smooth curve. In the final 
step the curves were connected together to form the final 
segmentation (Figs. 4 and 5).  
  

 
Figure.4. Final segmentation on the aligned image. 

 

 
Figure.5. Final segmentation on the original image. 

 

 
Figure.6. Two example results. (a,d) Composite image. (b,e) 

Composite image with average manual tracing (c,f) Composite 
image with segmented borders in 2D. 

 
4. EXPERIMENTS AND RESULTS 

 
The proposed method is tested on thirteen 3D macular 

SD-OCT images obtained from eyes without pathologies 
with Topcon 3D OCT-1000 imaging system (with a size of 
650 × 512 × 128 voxels and a voxel resolution of 4.81 × 
13.67 × 24.41 𝜇𝑚3). The mean unsigned and signed border 
positioning errors (mean ± SD) was 8.52±3.13 and -
4.61±3.35 micrometers, respectively. Fig.6 shows examples 
of our segmentation results. Manual segmentation is 
obtained using mean value of segmentation by two 
independent observers. The average manual tracing is used 
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as ground truth to evaluate the method. The mean unsigned 
and signed border positioning errors for each border are 
computed and presented in TABLE 1. 
The average computation time of the proposed algorithms 
(implemented with MATLAB) was 12 seconds per 2D slice. 
We applied the k-means clustering for 100 iterations and 
selected the clustering result with the highest with-in-class 
and the lowest between-class index. 
The OCT images were segmented to locate all of the 11 
proposed layers in [14], furthermore, one extra layer 
between 6th and 7th layer was located which is named 6a in 
this paper. 

 
Table 1. Summary of mean unsigned and signed border 

positioning errors (mean ± sd) in micrometers 
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1 6.88±3.22 6.25±3.12 4.85±2.42 -5.34±2.31 
2 12.82±5.56 15.94±8.94 -13.54±5.65 13.16±6.56 
3 10.94±4.13 10.63±6.19 -13.22±4.38 13.37±6.39 
4 15.03±5.12 16.25±9.27 -16.23±5.62 13.06±7.24 
5 10.05±3.74 12.82±5.36 -7.63±4.21 9.84±5.21 
6 13.75±3.18 12.53±4.89 -11.34±5.34 12.88±6.13 
6a 6.57±2.13 7.81±3.76 6.62±1.21 -12.28±2.36 
7 3.44±1.01 5.63±2.23 3.16±1.24 -6.06±2.34 
8 4.07±2.08 5.61±2.58 3.97±2.12 5.91±1.54 
9 5.05±1.29 8.42±3.95 -3.91±1.65 7.09±2.18 

10 6.25±2.37 6.55±3.84 -4.16±2.37 7.31±1.94 
11 6.88±2.42 7.19±2.45 -3.60±2.46 8.97±2.94 

ov
er

al
l 

8.52±3.13 9.65±4.83 -4.61±3.35 5.71±3.98 

 
5. CONCLUSION 

 
This research shows the ability of diffusion maps in 
segmentation of gray-level images for the first time. As it 
could be found in section 1, diffusion map has a wide range 
of application in medical image segmentation [15-18]. 
However, the under investigation images were all 
corresponding to high dimensionality of each pixel (or 
voxel) like diffusion MRI or fMRI and higher spectral 
microscopic images. But, our OCT images are simple gray 
leveled pixels (or voxels). However, two important points 
should be considered: 
A. Every algorithm capable of dealing with high 
dimensionality of points, is able to handle the low 
dimensional (and even one-dimensional) datasets. 
B. In order to reduce the effect of unavoidable noise 
of OCT images and to get rid of very complicated and time 
consuming noise reduction in preprocessing step, we may 
select more than one pixel (or voxel) as the nodes of our 
graph and select three categories of textural features 

(Statistics, Co-occurrence Matrix, Run-Length Matrix) from 
each node to measure the similarity between the nodes.  
 

6. RELATION TO PRIOR WORK 
 

The proposed method is obviously categorized in 3D graph 
based methods, but the graph partitioning was usually based 
on properties in the graph domain like gradient or texture. 
But newly developed methods in frequency domain are 
based on signal analysis in new domains (similar to Fourier 
transform in signal processing). The proposed Diffusion 
Map method is similarly working on Fourier transform 
applied on graphs and the method can utilize the intrinsic 
capabilities of the frequency space consequently. In contrast 
to recent methods of graph based OCT image segmentation 
[12, 14], the presented approach does not require edge-based 
image information and rather relies on regional image 
texture through space-frequency analysis [15, 19]. 
Consequently, the proposed method demonstrates 
robustness in situations of low image contrast or poor layer-
to-layer image gradients. 
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